Skip to main content

Using Diet to Induce Metabolic Disease in Rodents

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Animal models of disease are important tools that allow us to model human conditions and test therapies. Metabolic disease, also called the Metabolic Syndrome (MS), is characterized by obesity, insulin resistance (IR), dyslipidemia and hypertension, the simultaneous occurrence of which increases the risk for developing coronary artery disease, type II diabetes and stroke. While genetic (spontaneous) animal models exist, many researchers prefer diet-induced models of the MS, since it is generally thought that the environment (and particularly the diet) plays a large role in the growing incidence of this disease in humans. This chapter will briefly outline some of the diet-induced approaches for animal models of the MS.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Levin B, Dunn-Meynell A, Balkan B, Keesey RE (1997) Selective breeding diet-induced obesity obesity Selective breeding for for diet-induced and resistance in Sprague-Dawley rats and resistance in rats. Am J Physiol 273(2):R725–R730

    CAS  PubMed  Google Scholar 

  2. Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC (1987) Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc Natl Acad Sci USA 84(11):3763

    CAS  PubMed  Google Scholar 

  3. West DB, Boozer CN, Moody DL, Atkinson RL, Sakaguchi M, Koya D, Haneda M, Kashiwagi A, Uzu T, Rossmeisl M, Jilkova Z, Stefl B, Pastalkova E, Drahota Z, Houstek J, Physiol AJ, Metab E, Joost H, Churchill GA, Peters LL, Physiol JA, B D, West B, N C, Boozer N, L D, Moody L, L R, Atkinson L, L D (2012) Dietary obesity in nine inbred mouse strains dietary strains. Am J Physiol Regul Integr Comp Physiol 262(6):R1025–R1032

    Google Scholar 

  4. Jensen MN, Ritskes-Hoitinga M (2007) How isoflavone levels in common rodent diets can interfere with the value of animal models and with experimental results. Lab Animal 41(1): 1–18.

    CAS  PubMed  Google Scholar 

  5. Cederroth CR, Vinciguerra M, Gjinovci A, Klein M, Suter M, Neumann D, James RW, Cederroth M, Doerge DR, Wallimann T, Meda P, Foti M (2008) Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 57(5):1176–1185

    CAS  PubMed  Google Scholar 

  6. Cederroth CR, Vinciguerra M, Kühne F, Madani R, Doerge DR, Visser TJ, Foti M, Rohner-Jeanrenaud F, Vassalli JD, Nef S (2007) A phytoestrogen-rich diet increases energy expenditure and decreases adiposity in mice. Environ Health Perspect 115(10):1467–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bialostosky K (2002) Dietary intake of micronutrients, and other dietary constituents: United States, 1988–1994. Vital Health Stat 11 (245):1–158

    Google Scholar 

  8. Ghibaudi L, Cook J, Farley C, Heek MV, Hwa JJ, Heek MVAN, J J (2002) Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague-Dawley rats. Obes Res 10(9):956–963

    Google Scholar 

  9. Storlien LH, Higgins J, Thomas T, Brown M, Wang H, Huang X, Else P (2000) Diet composition and insulin action in animal models. Br J Nutr 83(1):85

    Google Scholar 

  10. Buettner R, Parhofer K, Woenckhaus M, Wrede C, Kunz-Schughart L, Schölmerich J, Bollheimer L (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36(3):485

    CAS  PubMed  Google Scholar 

  11. Wang H, Storlien LH, Huang XF (2002) Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am J Physiol Endocrinol Metab 282(6):E1352

    CAS  PubMed  Google Scholar 

  12. Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H, Ezaki O (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism 45(12):1539–1546

    CAS  PubMed  Google Scholar 

  13. Pellizzon M, Buison A, Ordiz F, Santa Ana L, Jen K-LC (2002) Effects of dietary fatty acids and exercise on body-weight regulation and metabolism in rats. Obes Res 10(9):947–955

    CAS  PubMed  Google Scholar 

  14. Dulloo AG, Mensi N, Seydoux J, Girardier L (1995) Differential effects of high-fat diets varying in fatty acid composition on the efficiency of lean and fat tissue deposition during weight recovery after low food intake 1. Metabolism 44(2):273–279

    CAS  PubMed  Google Scholar 

  15. Rossmeisl M, Rim JS, Koza RA, Kozak LP (2003) Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52(8):1958

    CAS  PubMed  Google Scholar 

  16. Farley C, Cook JA, Spar BD, Austin TM, Kowalski TJ (2003) Meal pattern analysis of diet-induced obesity in susceptible and resistant rats. Obesity 11(7):845–851

    Google Scholar 

  17. Chang SAM, Lin D, Peters JC (1990) Metabolic differences between obesity-prone and obesity-resistant rats. Am J Physiol 259(6):R1103–R1110

    CAS  PubMed  Google Scholar 

  18. Levin BE, Dunn-Meynell AA (2006) Differential effects of exercise on body weight gain and adiposity in obesity-prone and -resistant rats. Int J Obes 30(4):722–727

    CAS  Google Scholar 

  19. Ricci MR, Levin BE (2003) Ontogeny of diet-induced obesity in selectively bred Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 285(3):R610

    PubMed  Google Scholar 

  20. Surwit R, Feinglos M, Rodin J, Sutherland A, Petro A, Opara E, Kuhn C, Rebuffe-Scrive M (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice 1. Metabolism 44(5):645–651

    CAS  PubMed  Google Scholar 

  21. Prpic V, Watson PM, Frampton IC, Sabol MA, Jezek GE, Gettys TW (2003) Differential mechanisms and development of leptin resistance in A/J versus C57BL/6J mice during diet-induced obesity. Endocrinology 144(4):1155

    CAS  PubMed  Google Scholar 

  22. Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48(11):2129–2139

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, Feng Y, Zhu L, Li C, Howard AD et al (2006) Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic \β-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55(6):1695–1704

    CAS  PubMed  Google Scholar 

  24. Mu J, Petrov A, Eiermann GJ, Woods J, Zhou YP, Li Z, Zycband E, Feng Y, Zhu L, Roy RS (2009) Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur J Pharmacol 623(1–3):148–154

    CAS  PubMed  Google Scholar 

  25. Kusakabe T, Tanioka H, Ebihara K, Hirata M, Miyamoto L, Miyanaga F, Hige H, Aotani D, Fujisawa T, Masuzaki H et al (2009) Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 52(4):675–683

    CAS  PubMed  Google Scholar 

  26. Samuel VT, Beddow SA, Iwasaki T, Zhang XM, Chu X, Still CD, Gerhard GS, Shulman GI (2009) Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 Diabetes. Proc Natl Acad Sci USA 106(29):12121–12126

    CAS  PubMed  Google Scholar 

  27. Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313–320

    CAS  PubMed  Google Scholar 

  28. Thackeray JT, Radziuk J, Harper M-E, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN (2011) Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol 10:75

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis JF, Smith SC, Stone NJ, Taubert KA (2002) AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: Consensus Panel Guide to Comprehensive Risk Reduction for Adult Patients Without Coronary or Other Atherosclerotic Vascular Diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106(3):388–391

    PubMed  Google Scholar 

  30. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    CAS  PubMed  Google Scholar 

  31. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880

    PubMed  Google Scholar 

  32. Hegsted DM, McGandy RB, Myers ML, Stare FJ (1965) Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17(5):281–295

    CAS  PubMed  Google Scholar 

  33. Srivastava RA (1994) Saturated fatty acid, but not cholesterol, regulates apolipoprotein AI gene expression by posttranscriptional mechanism. Biochem Mol Biol Int 34(2):393–402

    CAS  PubMed  Google Scholar 

  34. Srivastava RA, Jiao S, Tang JJ, Pfleger BA, Kitchens RT, Schonfeld G (1991) In vivo regulation of low-density lipoprotein receptor and apolipoprotein B gene expressions by dietary fat and cholesterol in inbred strains of mice. Biochim Biophys Acta 1086(1):29–43

    CAS  PubMed  Google Scholar 

  35. Srivastava RA, Tang J, Krul ES, Pfleger B, Kitchens RT, Schonfeld G (1992) Dietary fatty acids and dietary cholesterol differ in their effect on the in vivo regulation of apolipoprotein A-I and A-II gene expression in inbred strains of mice. Biochim Biophys Acta 1125(3):251–261

    CAS  PubMed  Google Scholar 

  36. Getz GS, Reardon CA (2006) Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 26(2):242–249

    CAS  PubMed  Google Scholar 

  37. Nishina PM, Verstuyft J, Paigen B (1990) Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31(5):859–869

    CAS  PubMed  Google Scholar 

  38. Nishina PM, Lowe S, Verstuyft J, Naggert JK, Kuypers FA, Paigen B (1993) Effects of dietary fats from animal and plant sources on diet-induced fatty streak lesions in C57BL/6J mice. J Lipid Res 34(8):1413–1422

    CAS  PubMed  Google Scholar 

  39. Jeong W-I, Jeong D-H, Do S-H, Kim Y-K, Park H-Y, Kwon O-D, Kim T-H, Jeong K-S (2005) Mild hepatic fibrosis in cholesterol and sodium cholate diet-fed rats. J Vet Med Sci 67(3):235–242

    CAS  PubMed  Google Scholar 

  40. Yokozawa T, Cho EJ, Sasaki S, Satoh A, Okamoto T, Sei Y (2006) The protective role of Chinese prescription Kangen-karyu extract on diet-induced hypercholesterolemia in rats. Biol Pharm Bull 29(4):760–765

    CAS  PubMed  Google Scholar 

  41. Zulet MA, Barber A, Garcin H, Higueret P, Martínez JA (1999) Alterations in carbohydrate and lipid metabolism induced by a diet rich in coconut oil and cholesterol in a rat model. J Am Coll Nutr 18(1):36–42

    CAS  PubMed  Google Scholar 

  42. Ando H, Tsuruoka S, Yamamoto H, Takamura T, Kaneko S, Fujimura A (2005) Regulation of cholesterol 7alpha-hydroxylase mRNA expression in C57BL/6 mice fed an atherogenic diet. Atherosclerosis 178(2):265–269

    CAS  PubMed  Google Scholar 

  43. Horton JD, Cuthbert JA, Spady DK (1995) Regulation of hepatic 7 alpha-hydroxylase expression and response to dietary cholesterol in the rat and hamster. J Biol Chem 270(10):5381–5387

    CAS  PubMed  Google Scholar 

  44. Lichtman AH, Clinton SK, Iiyama K, Connelly PW, Libby P, Cybulsky MI (1999) Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol 19(8):1938–1944

    CAS  PubMed  Google Scholar 

  45. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99(11):7604–7609

    CAS  PubMed  Google Scholar 

  46. Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21(3):365–371

    CAS  PubMed  Google Scholar 

  47. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14(1):133–140

    CAS  PubMed  Google Scholar 

  48. Johnson JL, George SJ, Newby AC, Jackson CL (2005) Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA 102(43):15575–15580

    CAS  PubMed  Google Scholar 

  49. Merat S, Casanada F, Sutphin M, Palinski W, Reaven PD (1999) Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arterioscler Thromb Vasc Biol 19(5):1223–1230

    CAS  PubMed  Google Scholar 

  50. Wu L, Vikramadithyan R, Yu S, Pau C, Hu Y, Goldberg IJ, Dansky HM (2006) Addition of dietary fat to cholesterol in the diets of LDL receptor knockout mice: effects on plasma insulin, lipoproteins, and atherosclerosis. J Lipid Res 47(10):2215–2222

    CAS  PubMed  Google Scholar 

  51. Davis HR, Compton DS, Hoos L, Tetzloff G (2001) Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in ApoE knockout mice. Arterioscler Thromb Vasc Biol 21(12):2032–2038

    CAS  PubMed  Google Scholar 

  52. Teupser D, Persky AD, Breslow JL (2003) Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). Arterioscler Thromb Vasc Biol 23(10):1907–1913

    CAS  PubMed  Google Scholar 

  53. Subramanian S, Han CY, Chiba T, McMillen TS, Wang SA, Haw A, Kirk EA, O’Brien KD, Chait A (2008) Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28(4):685–691

    CAS  PubMed Central  PubMed  Google Scholar 

  54. King VL, Hatch NW, Chan HW, de Beer MC, de Beer FC, Tannock LR (2009) A murine model of obesity with accelerated atherosclerosis. Obesity 18(1):35–41

    PubMed Central  PubMed  Google Scholar 

  55. Merkel M, Velez-Carrasco W, Hudgins LC, Breslow JL (2001) Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice. Proc Natl Acad Sci USA 98(23):13294–13299

    CAS  PubMed  Google Scholar 

  56. Otto J, Ordovas JM, Smith D, van Dongen D, Nicolosi RJ, Schaefer EJ (1995) Lovastatin inhibits diet induced atherosclerosis in F1B golden Syrian hamsters. Atherosclerosis 114(1):19–28

    CAS  PubMed  Google Scholar 

  57. Alexaki A, Wilson TA, Atallah MT, Handelman G, Nicolosi RJ (2004) Hamsters fed diets high in saturated fat have increased cholesterol accumulation and cytokine production in the aortic arch compared with cholesterol-fed hamsters with moderately elevated plasma non-HDL cholesterol concentrations. J Nutr 134(2):410–415

    CAS  PubMed  Google Scholar 

  58. Kahlon T (1996) Cholesterol response and foam cell formation in hamsters fed two levels of saturated fat and various levels of cholesterol. Nutr Res 16(8):1353–1368

    CAS  Google Scholar 

  59. Castro-Perez J, Briand F, Gagen K, Wang S-P, Chen Y, McLaren DG, Shah V, Vreeken RJ, Hankemeier T, Sulpice T, Roddy TP, Hubbard BK, Johns DG (2011) Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters. J Lipid Res 52(11):1965–1973

    CAS  PubMed  Google Scholar 

  60. Khosla P, Sundram K (1996) Effects of dietary fatty acid composition on plasma cholesterol. Prog Lipid Res 35(2):93–132

    CAS  PubMed  Google Scholar 

  61. Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34(10):1637–1659

    CAS  PubMed  Google Scholar 

  62. Blair RM, Appt SE, Bennetau-Pelissero C, Clarkson TB, Anthony MS, Lamothe V, Potter SM (2002) Dietary soy and soy isoflavones have gender-specific effects on plasma lipids and isoflavones in golden Syrian f(1)b hybrid hamsters. J Nutr 132(12):3585–3591

    CAS  PubMed  Google Scholar 

  63. Fernandez ML, Volek JS (2006) Guinea pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr Metab 3:17

    Google Scholar 

  64. Lin EC, Fernandez ML, Tosca MA, McNamara DJ (1994) Regulation of hepatic LDL metabolism in the guinea pig by dietary fat and cholesterol. J Lipid Res 35(3):446–457

    CAS  PubMed  Google Scholar 

  65. Cos E, Ramjiganesh T, Roy S, Yoganathan S, Nicolosi RJ, Fernandez ML (2001) Soluble fiber and soybean protein reduce atherosclerotic lesions in guinea pigs. Sex and hormonal status determine lesion extension. Lipids 36(11):1209–1216

    CAS  PubMed  Google Scholar 

  66. Zern TL, West KL, Fernandez ML (2003) Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J Nutr 133(7):2268–2272

    CAS  PubMed  Google Scholar 

  67. Aggarwal D, West KL, Zern TL, Shrestha S, Vergara-Jimenez M, Fernandez ML (2005) JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc Disord 5:30

    PubMed Central  PubMed  Google Scholar 

  68. Conde K, Vergara-Jimenez M, Krause BR, Newton RS, Fernandez ML (1996) Hypocholesterolemic actions of atorvastatin are associated with alterations on hepatic cholesterol metabolism and lipoprotein composition in the guinea pig. J Lipid Res 37(11):2372–2382

    CAS  PubMed  Google Scholar 

  69. Torres-Gonzalez M, Volek JS, Sharman M, Contois JH, Fernandez ML (2006) Dietary carbohydrate and cholesterol influence the number of particles and distributions of lipoprotein subfractions in guinea pigs. J Nutr Biochem 17(11):773–779

    CAS  PubMed  Google Scholar 

  70. Fernandez ML, Wilson TA, Conde K, Vergara-Jimenez M, Nicolosi RJ (1999) Hamsters and guinea pigs differ in their plasma lipoprotein cholesterol distribution when fed diets varying in animal protein, soluble fiber, or cholesterol content. J Nutr 129(7):1323–1332

    CAS  PubMed  Google Scholar 

  71. Fernandez ML, Vergara-Jimenez M, Conde K, Abdel-Fattah G (1996) Dietary carbohydrate type and fat amount alter VLDL and LDL metabolism in guinea pigs. J Nutr 126(10):2494–2504

    CAS  PubMed  Google Scholar 

  72. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79(4):537–543

    CAS  PubMed  Google Scholar 

  73. Daly ME, Vale C, Walker M, Alberti KG, Mathers JC (1997) Dietary carbohydrates and insulin sensitivity: a review of the evidence and clinical implications. Am J Clin Nutr 66(5):1072–1085

    CAS  PubMed  Google Scholar 

  74. Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab 2(1):5

    Google Scholar 

  75. Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA (1996) Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. Am J Physiol 271(5 Pt 2):R1319–R1326

    CAS  PubMed  Google Scholar 

  76. Pagliassotti MJ, Gayles EC, Podolin DA, Wei Y, Morin CL (2000) Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am J Physiol Regul Integr Comp Physiol 278(1):R66–R73

    CAS  PubMed  Google Scholar 

  77. Sleder J, Chen YD, Cully MD, Reaven GM (1980) Hyperinsulinemia in fructose-induced hypertriglyceridemia in the rat. Metabolism 29(4):303–305

    CAS  PubMed  Google Scholar 

  78. Thresher JS, Podolin DA, Wei Y, Mazzeo RS, Pagliassotti MJ (2000) Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am J Physiol Regul Integr Comp Physiol 279(4):R1334–R1340

    CAS  PubMed  Google Scholar 

  79. Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen E (1989) Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49(6):1155– 1163

    CAS  PubMed  Google Scholar 

  80. Pagliassotti MJ, Prach PA (1995) Quantity of sucrose alters the tissue pattern and time course of insulin resistance in young rats. Am J Physiol 269(3 Pt 2):R641–R646

    CAS  PubMed  Google Scholar 

  81. Horton TJ, Gayles EC, Prach PA, Koppenhafer TA, Pagliassotti MJ (1997) Female rats do not develop sucrose-induced insulin resistance. Am J Physiol 272(5 Pt 2):R1571–R1576

    CAS  PubMed  Google Scholar 

  82. Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 133(1):127–133

    CAS  PubMed  Google Scholar 

  83. Kasim-Karakas SE, Vriend H, Almario R, Chow LC, Goodman MN (1996) Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J Lab Clin Med 128(2):208–213

    CAS  PubMed  Google Scholar 

  84. Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K (2000) Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem 275(12):8416–8425

    CAS  PubMed  Google Scholar 

  85. Basciano H, Miller AE, Naples M, Baker C, Kohen R, Xu E, Su Q, Allister EM, Wheeler MB, Adeli K (2009) Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Physiol Endocrinol Metab 297(2):E462–E473

    CAS  PubMed  Google Scholar 

  86. Nagata R, Nishio Y, Sekine O, Nagai Y, Maeno Y, Ugi S, Maegawa H, Kashiwagi A (2004) Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [corrected]. J Biol Chem 279(28):29031–29042

    CAS  PubMed  Google Scholar 

  87. Sumiyoshi M, Sakanaka M, Kimura Y (2006) Chronic intake of high-fat and high-sucrose diets differentially affects glucose intolerance in mice. J Nutr 136(3):582–587

    CAS  PubMed  Google Scholar 

  88. Zafrani ES (2004) Non-alcoholic fatty liver disease: an emerging pathological spectrum. Virchows Arch 444(1):3–12

    PubMed  Google Scholar 

  89. Marchesini G, Babini M (2006) Nonalcoholic fatty liver disease and the metabolic syndrome. Minerva Cardioangiol 54(2):229–239

    CAS  PubMed  Google Scholar 

  90. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87(1):1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129(1):113–121

    PubMed  Google Scholar 

  92. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6):1387–1395

    PubMed  Google Scholar 

  93. Sahai A, Malladi P, Melin-Aldana H, Green RM, Whitington PF (2004) Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol 287(1):G264–G273

    CAS  PubMed  Google Scholar 

  94. Weltman MD, Farrell GC, Liddle C (1996) Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111(6):1645–1653

    CAS  PubMed  Google Scholar 

  95. Kulinski A, Vance DE, Vance JE (2004) A choline-deficient diet in mice inhibits neither the CDP-choline pathway for phosphatidylcholine synthesis in hepatocytes nor apolipoprotein B secretion. J Biol Chem 279(23):23916–23924

    CAS  PubMed  Google Scholar 

  96. Mu YP, Ogawa T, Kawada N (2010) Reversibility of fibrosis, inflammation, and endoplasmic reticulum stress in the liver of rats fed a methionine-choline-deficient diet. Lab Invest 90(2):245–256

    CAS  PubMed  Google Scholar 

  97. Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, Kirsch RE, Hall P de la M (2003) Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastro­enterol Hepatol 18(11):1272–1282

    PubMed  Google Scholar 

  98. Rinella ME, Green RM (2004) The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 40(1):47–51

    CAS  PubMed  Google Scholar 

  99. Pickens MK, Yan JS, Ng RK, Ogata H, Grenert JP, Beysen C, Turner SM, Maher JJ (2009) Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis. J Lipid Res 50(10):2072–2082

    CAS  PubMed  Google Scholar 

  100. Pickens MK, Ogata H, Soon RK, Grenert JP, Maher JJ (2010) Dietary fructose exacerbates hepatocellular injury when incorporated into a methionine-choline-deficient diet. Liver Int 30(8):1229–1239

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Lee GS, Yan JS, Ng RK, Kakar S, Maher JJ (2007) Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury. J Lipid Res 48(8):1885–1896

    CAS  PubMed  Google Scholar 

  102. Hussein O, Grosovski M, Lasri E, Svalb S, Ravid U, Assy N (2007) Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J Gastro­enterol 13(3):361–368

    CAS  PubMed  Google Scholar 

  103. Fujita K, Nozaki Y, Yoneda M, Wada K, Takahashi H, Kirikoshi H, Inamori M, Saito S, Iwasaki T, Terauchi Y, Maeyama S, Nakajima A (2010) Nitric oxide plays a crucial role in the development/progression of nonalcoholic steatohepatitis in the choline-deficient, l-amino acid-defined diet-fed rat model. Alcohol Clin Exp Res 34(Suppl 1):S18–S24

    CAS  PubMed  Google Scholar 

  104. Veteläinen R, van Vliet A, van Gulik TM (2007) Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model. J Gastroenterol Hepatol 22(9):1526–1533

    PubMed  Google Scholar 

  105. Raubenheimer PJ, Nyirenda MJ, Walker BR (2006) A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55(7):2015–2020

    CAS  PubMed  Google Scholar 

  106. Samuel VT, Liu Z-X, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279(31):32345–32353

    CAS  PubMed  Google Scholar 

  107. Gauthier M-S, Favier R, Lavoie J-M (2006) Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 95(2):273–281

    CAS  PubMed  Google Scholar 

  108. Romestaing C, Piquet M-A, Bedu E, Rouleau V, Dautresme M, Hourmand-Ollivier I, Filippi C, Duchamp C, Sibille B (2007) Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr Metab 4:4

    Google Scholar 

  109. Cong W-N, Tao R-Y, Tian J-Y, Liu G-T, Ye F (2008) The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life Sci 82(19–20):983–990

    CAS  PubMed  Google Scholar 

  110. Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN, Haigh WG, Yeh MM, Kowdley KV, O’Brien KD, Pennathur S, Chait A (2011) Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 52(9):1626–1635

    CAS  PubMed  Google Scholar 

  111. Roth CL, Elfers CT, Figlewicz DP, Melhorn SJ, Morton GJ, Hoofnagle A, Yeh MM, Nelson JE, Kowdley KV (2012) Vitamin D deficiency in obese rats exacerbates NAFLD and increases hepatic resistin and toll-like receptor activation. Hepatology 55(4):1103–1111

    CAS  PubMed  Google Scholar 

  112. Lieber CS, DeCarli LM, Leo MA, Mak KM, Ponomarenko A, Ren C, Wang X (2008) Beneficial effects versus toxicity of medium-chain triacylglycerols in rats with NASH. J Hepatol 48(2):318–326

    CAS  PubMed  Google Scholar 

  113. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistreri WF, Woods SC, Seeley RJ (2010) High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52(3):934–944

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC, Bateman AC, Clough GF, Poston L, Hanson MA, McConnell JM, Byrne CD (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50(6):1796–1808

    CAS  PubMed  Google Scholar 

  115. Karmakar S, Das D, Maiti A, Majumdar S, Mukherjee P, Das AS, Mitra C (2011) Black tea prevents high fat diet-induced non-alcoholic steatohepatitis. Phytother Res 25(7):1073–1081

    Google Scholar 

  116. Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Abe M, Fukushima Y, Kikuchi M, Fujita T (2002) High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension 40(1):83–89

    CAS  PubMed  Google Scholar 

  117. Konda T, Enomoto A, Takahara A, Yamamoto H (2006) Effects of L/N-type calcium channel antagonist, cilnidipine on progressive renal injuries in Dahl salt-sensitive rats. Biol Pharm Bull 29(5):933–937

    CAS  PubMed  Google Scholar 

  118. Owens D (2006) Surgically and chemically induced models of disease. In: Suckow MA, Weisbroth SH, Franklin CL (eds) The laboratory rat. Elsevier Academic, Boston, MA, pp 711–732

    Google Scholar 

  119. Vasdev S, Gill V, Parai S, Gadag V (2005) Dietary vitamin e supplementation attenuates hypertension in Dahl salt-sensitive rats. J Cardiovasc Pharmacol Ther 10(2):103–111

    CAS  PubMed  Google Scholar 

  120. Mattson DL, Kunert MP, Kaldunski ML, Greene AS, Roman RJ, Jacob HJ, Cowley AW (2004) Influence of diet and genetics on hypertension and renal disease in Dahl salt-sensitive rats. Physiological genomics 16(2):194–203

    CAS  PubMed  Google Scholar 

  121. Nevala R, Vaskonen T, Vehniäinen J, Korpela R, Vapaatalo H (2000) Soy based diet attenuates the development of hypertension when compared to casein based diet in spontaneously hypertensive rat. Life Sci 66(2):115–124

    CAS  PubMed  Google Scholar 

  122. Buñag RD, Tomita T, Sasaki S (1983) Chronic sucrose ingestion induces mild hyper­tension and tachycardia in rats. Hypertension 5(2):218–225

    PubMed  Google Scholar 

  123. Zhang HY, Reddy S, Kotchen TA (1999) A high sucrose, high linoleic acid diet potentiates hypertension in the Dahl salt sensitive rat. Am J Hypertens 12(2 Pt 1):183–187

    CAS  PubMed  Google Scholar 

  124. Preuss HG, Gondal JA, Bustos E, Bushehri N, Lieberman S, Bryden NA, Polansky MM, Anderson RA (1995) Effects of chromium and guar on sugar-induced hypertension in rats. Clin Nephrol 44(3):170–177

    CAS  PubMed  Google Scholar 

  125. Thierry-Palmer M, Tewolde TK, Emmett NL, Bayorh MA (2010) High dietary salt does not significantly affect plasma 25-hydroxyvitamin D concentrations of Sprague Dawley rats. BMC Res Notes 3:332

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ (2000) Development of hypertension in a rat model of diet-induced obesity. Hypertension 35(4):1009–1015

    CAS  PubMed  Google Scholar 

  127. Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, Franco M (2007) Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 292(1):F423–F429

    PubMed  Google Scholar 

  128. Vasudevan H, Xiang H, McNeill JH (2005) Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats. Am J Physiol Heart Circ Physiol 289(4):H1335–H1342

    CAS  PubMed  Google Scholar 

  129. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10(5):512–516

    CAS  PubMed  Google Scholar 

  130. DeFronzo RA (1981) The effect of insulin on renal sodium metabolism. A review with clinical implications. Diabetologia 21(3):165–171

    CAS  PubMed  Google Scholar 

  131. Noguchi T, Ikeda K, Sasaki Y, Yamamoto J, Yamori Y (2004) Effects of vitamin E and sesamin on hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 31(Suppl 2):S24–S26

    PubMed  Google Scholar 

  132. Sallinen K, Arvola P, Wuorela H, Ruskoaho H, Vapaatalo H, Pörsti I (1996) High calcium diet reduces blood pressure in exercised and nonexercised hypertensive rats. Am J Hypertens 9(2):144–156

    CAS  PubMed  Google Scholar 

  133. Yu Q, Larson DF, Slayback D, Lundeen TF, Baxter JH, Watson RR (2004) Characterization of high-salt and high-fat diets on cardiac and vascular function in mice. Cardiovasc Toxicol 4(1):37–46

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Gajda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gajda, A.M., Pellizzon, M.A., Ricci, M.R. (2012). Using Diet to Induce Metabolic Disease in Rodents. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics