Skip to main content

An Introduction to Best Practices in Free Energy Calculations

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Free energy calculations are extremely useful for investigating small-molecule biophysical properties such as protein-ligand binding affinities and partition coefficients. However, these calculations are also notoriously difficult to implement correctly. In this chapter, we review standard methods for computing free energy via simulation, discussing current best practices and examining potential pitfalls for computational researchers performing them for the first time. We include a variety of examples and tips for how to set up and conduct these calculations, including applications to relative binding affinities and small-molecule solvation free energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woods CJ, Manby FR, Mulholland AJ (2008) An efficient method for the calculation of qluantum mechanics/molecular mechanics free energies. J Chem Phys 128:014109

    Article  PubMed  Google Scholar 

  2. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. i. nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  3. Shirts MR, Pande VS (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys 122:144107

    Article  PubMed  Google Scholar 

  4. Lu ND, Singh JK, Kofke DA (2003) Appropriate methods to combine forward and reverse free-energy perturbation averages. J Chem Phys 118:2977–2984

    Article  CAS  Google Scholar 

  5. Lu ND, Kofke DA (1999) Optimal intermediates in staged free energy calculations. J Chem Phys 111:4414–4423

    Article  CAS  Google Scholar 

  6. Wu D, Kofke DA (2005) Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation. J Chem Phys 123:054103

    Google Scholar 

  7. Wu D, Kofke DA (2005) Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations. J Chem Phys 123:084109

    Google Scholar 

  8. Jarzynski C (2006) Rare events and the convergence of exponentially averaged work values. Phys Rev E 73:046105

    Article  Google Scholar 

  9. Resat H, Mezei M (1993) Studies on free energy calculations. I. Thermodynamic integration using a polynomial path. J Chem Phys 99:6052–6061

    CAS  Google Scholar 

  10. Jorge M, Garrido N, Queimada A, Economou I, Macedo E (2010) Effect of the Integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theor Comput 6:1018–1027

    Article  CAS  Google Scholar 

  11. Shyu C, Ytreberg FM (2009) Reducing the bias and uncertainty of free energy estimates by using regression to fit thermodynamic integration data. J Comput Chem 30:2297–2304

    PubMed  CAS  Google Scholar 

  12. Crooks GE (2000) Path-ensemble averages in systems driven far from equilibrium. Phys Rev E 61:2361–2366

    Article  CAS  Google Scholar 

  13. Bennett, C. H. (1976) Efficient Estimation of Free Energy Differences from Monte Carlo Data. J. Comput. Phys. 22:245–268

    Article  Google Scholar 

  14. Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91:140601

    Article  PubMed  Google Scholar 

  15. Ytreberg FM, Swendsen RH, Zuckerman DM (2006) Comparison of free energy methods for molecular systems. J Chem Phys 125:184114

    Article  PubMed  Google Scholar 

  16. Rick SW (2006) Increasing the efficiency of free energy calculations using parallel tempering and histogram reweighting. J Chem Theor Comput 2:939–946

    Article  CAS  Google Scholar 

  17. Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo Data Analysis. Phys Rev Lett 63:1195–1198

    Article  PubMed  CAS  Google Scholar 

  18. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  19. Bartels C, Karplus M (1997) Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J Comput Chem 18:1450–1462

    Article  CAS  Google Scholar 

  20. Gallicchio E, Andrec M, Felts AK, Levy RM (2005) Temperature weighted histogram analysis method, replica exchange, and transition paths. J Phys Chem B 109:6722–6731

    Article  PubMed  CAS  Google Scholar 

  21. Hub JS, de Groot BL, van der Spoel D (2010) g_wham–a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theor Comput 6:3713–3720

    Article  CAS  Google Scholar 

  22. Souaille M, Roux B (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun 135:40–57

    Article  CAS  Google Scholar 

  23. Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91:2798–2814

    Article  PubMed  CAS  Google Scholar 

  24. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:129105

    Google Scholar 

  25. Oostenbrink C, van Gunsteren WF (2006) Calculating zeros: non-equilibrium free energy calculations. Chem Phys 323:102–108

    Article  CAS  Google Scholar 

  26. Oberhofer H, Dellago C, Geissler PL (2005) Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? J Phys Chem B 109:6902–6915

    Article  PubMed  CAS  Google Scholar 

  27. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114:10235–10253

    Article  PubMed  CAS  Google Scholar 

  28. Pitera JW, van Gunsteren WF (2002) A comparison of non-bonded scaling approaches for free energy calculations. Mol Simulat 28:45–65

    Article  CAS  Google Scholar 

  29. Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127:214108

    Article  PubMed  Google Scholar 

  30. Pearlman DA, Connelly PR (1995) Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to native and TYR82 → PHE82 FKBP-12 proteins using free energy simulations. J Mol Biol 248:696–717

    Article  PubMed  CAS  Google Scholar 

  31. Wang L, Hermans J (1994) Change of bond length in free-energy simulations: algorithmic improvements, but when is it necessary? J Chem Phys 100:9129–9139

    Article  CAS  Google Scholar 

  32. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222:529–539

    Article  CAS  Google Scholar 

  33. Zacharias M, Straatsma TP, McCammon JA (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J Phys Chem 100:9025–9031

    Article  CAS  Google Scholar 

  34. Shirts MR, Pande VS (2005) Solvation free energies of amino acid side chains for common molecular mechanics water models. J Chem Phys 122:134508

    Article  PubMed  Google Scholar 

  35. Pham TT, Shirts MR (2011) Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. J Chem Phys 135:034114

    Article  PubMed  Google Scholar 

  36. Blondel A (2004) Ensemble variance in free energy calculations by thermodynamic integration: theory, optimal Alchemical path, and practical solutions. J Comput Chem 25:985–993

    Article  PubMed  CAS  Google Scholar 

  37. Steinbrecher T, Joung I, Case DA (2011) Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations. J Comput Chem ASAP 32:3253–3263

    Article  CAS  Google Scholar 

  38. Boresch S, Karplus M (1999) The role of bonded terms in free energy simulations. 2. Calculation of their influence on free energy differences of solvation. J Phys Chem A 103:119–136

    Article  CAS  Google Scholar 

  39. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem A 107:9535–9551

    Article  CAS  Google Scholar 

  40. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119:5740–5761

    Article  CAS  Google Scholar 

  41. Mobley DL, Dumont È, Chodera JD, and Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111:2242–2254

    Article  PubMed  CAS  Google Scholar 

  42. Nicholls A, Mobley DL, Guthrie PJ, Chodera JD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51:769–779

    Article  PubMed  CAS  Google Scholar 

  43. Mobley DL, Bayly CI, Cooper MD, Dill KA (2009) Predictions of hydration free energies from all-atom molecular dynamics simulations. J Phys Chem B 113:4533–4537

    Article  PubMed  CAS  Google Scholar 

  44. Ytreberg F (2009) Absolute FKBP binding affinities obtained via nonequilibrium unbinding simulations. J Chem Phys 130:164906

    Article  PubMed  Google Scholar 

  45. Lee MS, Olson MA (2006) Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J 90:864–877

    Article  PubMed  CAS  Google Scholar 

  46. Woo H-J, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulation. Proc Natl Acad Sci 102:6825–6830

    Article  PubMed  CAS  Google Scholar 

  47. Gan W, Roux B (2008) Binding specificity of SH2 domains: insight from free energy simulations. Proteins 74:996–1007

    Article  Google Scholar 

  48. Boresch S, Karplus M (1996) The Jacobian factor in free energy simulations. J Chem Phys 105:5145–5154

    Article  CAS  Google Scholar 

  49. Shenfeld DK, Xu H, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E 80:046705

    Article  Google Scholar 

  50. Kastenholz MA, Hünenberger PH (2006) Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. J Chem Phys 124:124106

    Google Scholar 

  51. Kastenholz MA, Hünenberger PH (2006) Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. J Chem Phys 124:224501

    Google Scholar 

  52. Fujitani H, Tanida Y, Ito M, Shirts MR, Jayachandran G, Snow CD, Sorin EJ, Pande VS (2005) Direct calculation of the binding free energies of FKBP ligands. J Chem Phys 123:084108

    Article  PubMed  Google Scholar 

  53. Smith LJ, Daura X, van Gunsteren WF (2002) Assessing equilibration and convergence in biomolecular simulations. Proteins: Struct Funct Bioinf 48:487–496

    Article  CAS  Google Scholar 

  54. Klimovich PV, Mobley DL (2010) Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. J Comp Aided Mol Design 24:307–316

    Article  CAS  Google Scholar 

  55. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  56. Torrie GM, Valleau JP (1977) Non-physical sampling distributions in monte-carlo free-energy estimation : umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  57. Mobley DL, Chodera JD, Dill KA (2007) Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J Chem Theor Comput 3:1231–1235

    Article  CAS  Google Scholar 

  58. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371:1118–1134

    Article  PubMed  CAS  Google Scholar 

  59. Okamoto Y (2004) Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol Graph Model 22:425–439

    Article  PubMed  CAS  Google Scholar 

  60. Roux B, Faraldo-Gómez JD (2007) Characterization of conformational equilibria through Hamiltonian and temperature replica-exchange simulations: assessing entropic and environmental effects. J Comput Chem 28:1634–1647

    Article  PubMed  Google Scholar 

  61. Woods CJ, Essex JW, King MA (2003) Enhanced configurational sampling in binding free energy calculations. J Phys Chem B 107:13711–13718

    Article  CAS  Google Scholar 

  62. Banba S, Guo Z, Brooks III CL (2000) Efficient sampling of ligand orientations and conformations in free energy calculations using the lambda-dynamics method. J Phys Chem B 104:6903–6910

    Article  CAS  Google Scholar 

  63. Bitetti-Putzer R, Yang W, Karplus M (2003) Generalized ensembles serve to improve the convergence of free energy simulations. Chem Phys Lett 377:633–641

    Article  CAS  Google Scholar 

  64. Hritz J, Oostenbrink C (2008) Hamiltonian replica exchange molecular dynamics using soft-core interactions. J Chem Phys 128:144121

    Article  PubMed  Google Scholar 

  65. Guo Z, Brooks III CL, Kong X (1998) Efficient and flexible algorithm for free energy calculations using the λ-dynamics approach. J Phys Chem B 102:2032–2036

    Article  CAS  Google Scholar 

  66. Kong X, Brooks III CL (1996) λ-dynamics: a new approach to free energy calculations. J Chem Phys 105:2414–2423

    Article  Google Scholar 

  67. Li H, Fajer M, Yang W (2007) Simulated scaling method for localized enhanced sampling and simultaneous “alchemical” free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations. J Chem Phys 126:024106

    Article  PubMed  Google Scholar 

  68. Zheng L, Carbone IO, Lugovskoy A, Berg BA, Yang W (2008) A hybrid recursion method to robustly ensure convergence efficiencies in the simulated scaling based free energy simulations. J Chem Phys 129:034105

    Article  PubMed  Google Scholar 

  69. Zheng L, Yang W (2008) Essential energy space random walks to accelerate molecular dynamics simulations: convergence improvements via an adaptive-length self-healing strategy. J Chem Phys 129:014105

    Article  PubMed  Google Scholar 

  70. Min D, Yang W (2008) Energy difference space random walk to achieve fast free energy calculations. J Chem Phys 128:191102

    Article  PubMed  Google Scholar 

  71. Li H, Yang W (2007) Forging the missing link in free energy estimations: lambda-WHAM in thermodynamic integration, overlap histogramming, and free energy perturbation. Chem Phys Lett 440:155–159

    Article  CAS  Google Scholar 

  72. Min D, Li H, Li G, Bitetti-Putzer R, Yang W (2007) Synergistic approach to improve “alchemical” free energy calculation in rugged energy surface. J Chem Phys 126:144109

    Article  PubMed  Google Scholar 

  73. Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet BK (2009) Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. J Mol Biol 394:747–763

    Article  PubMed  CAS  Google Scholar 

  74. Mobley DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125:084902

    Article  PubMed  Google Scholar 

  75. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  76. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111:13052–13063

    Article  PubMed  CAS  Google Scholar 

  77. Shirts MR, Mobley DL, Chodera JD (2007) Alchemical free energy calculations: ready for prime time? Ann Rep Comput Chem 3:41–59

    Article  CAS  Google Scholar 

  78. Huang N, Jacobson MP (2007) Physics-based methods for studying protein-ligand interactions. Curr Opin Drug Di De 10:325–331

    CAS  Google Scholar 

  79. Gilson MK, Zhou H-X (2007) Calculation of protein-ligand binding affinities. Ann Rev Bioph Biom 36:21–42

    Article  CAS  Google Scholar 

  80. Meirovitch H (2007) Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr Opin Struc Bio 17:181–186

    Article  CAS  Google Scholar 

  81. Rodinger T, Pomès R (2005) Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr Opin Struc Bio 15:164–170

    Article  CAS  Google Scholar 

  82. Jorgensen, W. L. (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    Article  PubMed  CAS  Google Scholar 

  83. Chipot C, Pearlman DA (2002) Free energy calculations. The long and winding gilded road. Mol Simulat 28:1–12

    CAS  Google Scholar 

  84. Brandsdal BO, Österberg F, Almlöf M, Feierberg I, Luzhkov VB, Åqvist J (2003) Free energy calculations and ligand binding. Adv Prot Chem 66:123–158

    Article  CAS  Google Scholar 

  85. Steinbrecher T, Labahn A (2010) Towards accurate free energy calculations in ligand protein-binding studies. Curr Med Chem 17:767–785

    Article  PubMed  CAS  Google Scholar 

  86. Michel J, Essex JW (2010) Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des 24:639–658

    Article  PubMed  CAS  Google Scholar 

  87. Christ CD, Mark AE, van Gunsteren WF (2010) Basic ingredients of free energy calculations: a review. J Comp Chem 31:1569–1582

    CAS  Google Scholar 

  88. Chipot C, Pohorille A (eds) (2007) Free energy calculations: theory and applications in chemistry and biology, vol 86. Springer, New York

    Google Scholar 

  89. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, CA

    Google Scholar 

  90. Reddy MR, Erion MD (eds) (2001) Free energy calculations in rational drug design. Kluwer Academic

    Google Scholar 

  91. Leach AR (1996) Molecular modelling: principles and applications. Addison Wesley Longman Limited, Harlow, Essex, England

    Google Scholar 

  92. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank John Chodera (UC-Berkeley) for ongoing discussions of reliability and usability for free energy calculations as well as TriPham (UVa) and Justin Lemkul (Virginia Tech), Joe Allen (SUNY Stonybrook) for careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Shirts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shirts, M.R., Mobley, D.L. (2013). An Introduction to Best Practices in Free Energy Calculations. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics