Skip to main content

Leaf Hue Measurements: A High-Throughput Screening of Chlorophyll Content

  • Protocol
  • First Online:
High-Throughput Phenotyping in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 918))

Abstract

Computer analysis of digital photographic images provides fast, high-throughput screening of leaf pigmentation. Pixel-by-pixel conversion of red, green, blue (RGB) parameters to hue, saturation, value (HSV) showed that Hue values were proportional to total chlorophyll, offering an alternative to photometric analysis of leaf extracts. This is demonstrated using tobacco leaves with various chlorophyll contents due to senescence but shows the possibility of applications in studies of stress conditions accompanied by chlorophyll loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  Google Scholar 

  2. Tang L, Kwon S-Y, Kim S-H et al (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  PubMed  CAS  Google Scholar 

  3. Hegedűs A, Janda T, Horváth VG et al (2008) Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants. J Plant Physiol 165:1647–1651

    Article  PubMed  Google Scholar 

  4. Singla-Pareek SL, Yadav SK, Pareek A et al (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  PubMed  CAS  Google Scholar 

  5. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  6. Yang C-M, Chang K-W, Yin M-H et al (1998) Methods for determination of the chlorophylls and their derivatives. Taiwania 43:116–122

    Google Scholar 

  7. Chaerle L, Van der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501

    Article  PubMed  CAS  Google Scholar 

  8. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  9. Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentrations. Am J Bot 88:677–684

    Article  PubMed  CAS  Google Scholar 

  10. Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  11. Madeira AC, Ferreira AA, De Varennes A et al (2003) SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun Soil Sci Plant Anal 34:2461–2470

    Article  CAS  Google Scholar 

  12. Lenk S, Chaerle L, Pfündel EE et al (2007) Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J Exp Bot 58:807–814

    Article  PubMed  CAS  Google Scholar 

  13. Cassol D, Silva FSP, Falqueto AR et al (2008) An evaluation of nondestructive methods to estimate total chlorophyll content. Photosynthetica 46:634–636

    Article  CAS  Google Scholar 

  14. Majer P, Sass L, Horváth VG et al (2010) Leaf hue measurements offer a fast, high-throughput initial screening of photosynthesis in leaves. J Plant Physiol 167:74–76

    Article  PubMed  CAS  Google Scholar 

  15. Schreiber U (1989) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  Google Scholar 

  16. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  17. Pratt WK (1991) Digital image processing. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Hideg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sass, L., Majer, P., Hideg, É. (2012). Leaf Hue Measurements: A High-Throughput Screening of Chlorophyll Content. In: Normanly, J. (eds) High-Throughput Phenotyping in Plants. Methods in Molecular Biology, vol 918. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-995-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-995-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-994-5

  • Online ISBN: 978-1-61779-995-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics