Skip to main content

Differentiation of Circulating Monocytes into Fibroblast-Like Cells

  • Protocol
  • First Online:
Book cover Stem Cell Mobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 904))

Abstract

Monocytes are produced in the bone marrow and enter the blood. They generally leave the blood and enter a tissue, and then become macrophages. In healing wounds, circulating monocytes also enter the tissue and instead of becoming macrophages, can differentiate into fibroblast-like cells called fibrocytes. Fibrocytes are also present in the lesions associated with fibrosing diseases such as congestive heart failure, end stage kidney disease, and pulmonary fibrosis. We have found that culturing blood monocytes, or white blood cell preparations containing monocytes, in serum-free media permits some of the monocytes to differentiate into fibrocytes within 5 days, and that this differentiation is inhibited by the blood plasma protein serum amyloid P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  2. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    PubMed  CAS  Google Scholar 

  3. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36:598–606

    Article  PubMed  CAS  Google Scholar 

  4. Gomperts BN, Strieter RM (2007) Fibrocytes in lung disease. J Leukoc Biol 82:449–456

    Article  PubMed  CAS  Google Scholar 

  5. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858–870

    Article  PubMed  CAS  Google Scholar 

  6. Wang JF, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE (2007) Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair Regen 15:113–121

    Article  PubMed  Google Scholar 

  7. Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE (2002) Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 82:1183–1192

    PubMed  CAS  Google Scholar 

  8. Pilling D, Buckley CD, Salmon M, Gomer RH (2003) Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol 17:5537–5546

    Google Scholar 

  9. Pilling D, Tucker NM, Gomer RH (2006) Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol 79:1242–1251

    Article  PubMed  CAS  Google Scholar 

  10. Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 4:e7475

    Article  PubMed  Google Scholar 

  11. Chesney J, Bacher M, Bender A, Bucala R (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci USA 94:6307–6312

    Article  PubMed  CAS  Google Scholar 

  12. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425

    PubMed  CAS  Google Scholar 

  13. Balmelli C, Ruggli N, McCullough K, Summerfield A (2005) Fibrocytes are potent stimulators of anti-virus cytotoxic T cells. J Leukoc Biol 77:923–933

    Article  PubMed  CAS  Google Scholar 

  14. Balmelli C, Alves MP, Steiner E, Zingg D, Peduto N, Ruggli N, Gerber H, McCullough K, Summerfield A (2007) Responsiveness of fibrocytes to toll-like receptor danger signals. Immunobiology 212:693–699

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA, Ghahary A, Tredget EE (2005) Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen 13:398–404

    Article  PubMed  Google Scholar 

  16. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    PubMed  CAS  Google Scholar 

  17. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304:81–90

    Article  PubMed  CAS  Google Scholar 

  18. Mehrad B, Burdick MD, Zisman DA, Keane MP, Belperio JA, Strieter RM (2007) Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun 353:104–108

    Article  PubMed  CAS  Google Scholar 

  19. Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci USA 103:14098–14103

    Article  PubMed  CAS  Google Scholar 

  20. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K, Gobel N, Talke Y, Schweda F, Mack M (2009) CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci USA 106:17892–17897

    Article  PubMed  CAS  Google Scholar 

  21. Barth PJ, Koster H, Moosdorf R (2005) CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol Res Pract 201:301–304

    Article  PubMed  Google Scholar 

  22. Quan TE, Bucala R (2007) Culture and analysis of circulating fibrocytes. Methods Mol Med 135:423–434

    Article  PubMed  CAS  Google Scholar 

  23. Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333

    Article  PubMed  CAS  Google Scholar 

  24. Pilling D, Vakil V, Gomer RH (2009) Improved serum-free culture conditions for the differentiation of human and murine fibrocytes. J Immunol Methods 351:62–70

    Article  PubMed  CAS  Google Scholar 

  25. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446

    PubMed  CAS  Google Scholar 

  26. Naik-Mathuria B, Pilling D, Crawford JR, Gay AN, Smith CW, Gomer RH, Olutoye OO (2008) Serum amyloid P inhibits dermal wound healing. Wound Repair Regen 16:266–273

    Article  PubMed  Google Scholar 

  27. Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 103:18284–18289

    Article  PubMed  CAS  Google Scholar 

  28. Pilling D, Gomer RH (2007) Regulatory pathways for fibrocyte differentiation. In: Bucala R (ed) Fibrocytes-new insights into tissue repair and systemic fibroses. World Scientific, Singapore, pp 37–60

    Chapter  Google Scholar 

  29. Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, Gomer RH (2007) Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol 179:4035–4044

    PubMed  CAS  Google Scholar 

  30. Haudek SB, Trial J, Xia Y, Gupta D, Pilling D, Entman ML (2008) Fc receptor engagement mediates differentiation of cardiac fibroblast precursor cells. Proc Natl Acad Sci USA 105:10179–10184

    Article  PubMed  CAS  Google Scholar 

  31. Cathcart ES, Wollheim FA, Cohen AS (1967) Plasma protein constituents of amyloid fibrils. J Immunol 99:376–385

    PubMed  CAS  Google Scholar 

  32. Thompson AR, Enfield DL (1978) Human plasma P component: isolation and characterization. Biochemistry 17:4304–4311

    Article  PubMed  CAS  Google Scholar 

  33. Binette P, Binette M, Calkins E (1974) The isolation and identification of the P-component of normal human plasma proteins. Biochem J 143:253–254

    PubMed  CAS  Google Scholar 

  34. Pepys MB, Dash AC (1977) Isolation of amyloid P component (protein AP) from normal serum as a calcium-dependent binding protein. Lancet 1:1029–1031

    Article  PubMed  CAS  Google Scholar 

  35. Painter RH (1977) Evidence that C1t (amyloid P-component) is not a subcomponent of the first component of complement (C1). J Immunol 119:2203–2205

    PubMed  CAS  Google Scholar 

  36. Pontet M, Engler R, Jayle MF (1978) One step preparation of both human C-reactive protein and CIt. FEBS Lett 88:172–175

    Article  PubMed  CAS  Google Scholar 

  37. de Beer FC, Pepys MB (1982) Isolation of human C-reactive protein and serum amyloid P component. J Immunol Methods 50:17–31

    Article  PubMed  Google Scholar 

  38. Gomer RH, Pilling D, Kauvar L, Ellsworth S, Pissani S, Real L, Ronkainen SD, Roife D, Ma F, Davis SC (2009) A serum amyloid P-binding hydrogel speeds healing of partial thickness wounds in pigs. Wound Repair Regen 17:397–404

    Article  PubMed  Google Scholar 

  39. Hind CR, Collins PM, Renn D, Cook RB, Caspi D, Baltz ML, Pepys MB (1984) Binding specificity of serum amyloid P component for the pyruvate acetal of galactose. J Exp Med 159:1058–1069

    Article  PubMed  CAS  Google Scholar 

  40. Schwalbe RA, Dahlback B, Coe JE, Nelsestuen GL (1992) Pentraxin family of proteins interact specifically with phosphorylcholine and/or phosphorylethanolamine. Biochemistry 31:4907–4915

    Article  PubMed  CAS  Google Scholar 

  41. de Beer FC, Baltz ML, Munn EA, Feinstein A, Taylor J, Bruton C, Clamp JR, Pepys MB (1982) Isolation and characterization of C-reactive protein and serum amyloid P component in the rat. Immunology 45:55–70

    PubMed  Google Scholar 

  42. Tillett WS, Francis T (1930) Serological reactions in pneumonia with a nonprotein somatic fraction of pneumococcus. J Exp Med 52:561–571

    Article  PubMed  CAS  Google Scholar 

  43. Bach BA, Gewurz H, Osmand AP (1977) C-reative protein in the rabbit: isolation, characterization and binding affinity to phosphocholine. Immunochemistry 14:215–219

    Article  PubMed  CAS  Google Scholar 

  44. Kinoshita CM, Gewurz AT, Siegel JN, Ying SC, Hugli TE, Coe JE, Gupta RK, Huckman R, Gewurz H (1992) A protease-sensitive site in the proposed Ca(2+)-binding region of human serum amyloid P component and other pentraxins. Protein Sci 1:700–709

    Article  PubMed  CAS  Google Scholar 

  45. Pepys MB, Booth DR, Hutchinson WL, Gallimore JR, Collins PM, Hohenester E (1997) Amyloid P component. A critical review. Amyloid 4:274–295

    Article  CAS  Google Scholar 

  46. Baltz ML, de Beer FC, Feinstein A, Pepys MB (1982) Calcium-dependent aggregation of human serum amyloid P component. Biochim Biophys Acta 701:229–236

    Article  PubMed  CAS  Google Scholar 

  47. Coker AR, Purvis A, Baker D, Pepys MB, Wood SP (2000) Molecular chaperone properties of serum amyloid P component. FEBS Lett 473:199–202

    Article  PubMed  CAS  Google Scholar 

  48. Hutchinson WL, Hohenester E, Pepys MB (2000) Human serum amyloid P component is a single uncomplexed pentamer in whole serum. Mol Med 6:482–493

    PubMed  CAS  Google Scholar 

  49. Sorensen IJ, Andersen O, Nielsen EH, Svehag SE (1995) Native human serum amyloid P component is a single pentamer. Scand J Immunol 41:263–267

    Article  PubMed  CAS  Google Scholar 

  50. Crawford JR, Pilling D, Gomer RH (2010) Improved serum-free culture conditions for spleen-derived murine fibrocytes. J Immunol Methods 363(1):9–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Nehemiah Cox and Jeff Crawford for critical reading of the manuscript. This work was supported by NIH grant HL083029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell Pilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pilling, D., Gomer, R.H. (2012). Differentiation of Circulating Monocytes into Fibroblast-Like Cells. In: Kolonin, M., Simmons, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 904. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-943-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-943-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-942-6

  • Online ISBN: 978-1-61779-943-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics