Skip to main content

In Vivo Models of Developmental Toxicology

  • Protocol
  • First Online:
Book cover Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 889))

Abstract

The founding principles of teratology/developmental toxicology state that a developmental toxicants cause dysmorphogenesis when conceptuses are exposed at a sufficient dosage during a sensitive period of development in a sensitive species. While in vitro approaches in developmental toxicology can provide a means to assess the potency of toxicants, ultimately, the need to use whole animal models to demonstrate embryotoxicity is necessary to fully extrapolate findings to the human condition. This chapter is dedicated to reviewing the advantages of specific animal models and how these animal models may be used to assess toxicity in the embryo, both descriptively and mechanistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson JG (1973) Environment and birth defects. Environmental sciences. Academic, New York, NY

    Google Scholar 

  2. National Research Council (U.S.). Committee on Developmental Toxicology., National Research Council (U.S.). Commission on Life Sciences (2000) Scientific frontiers in developmental toxicology and risk assessment. National Academy Press, Washington, DC

    Google Scholar 

  3. Sulston JE (1983) Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):443–452

    Article  PubMed  Google Scholar 

  4. Sulston JE, Schierenberg E, White JG et al (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  PubMed  CAS  Google Scholar 

  5. Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–416

    Article  PubMed  CAS  Google Scholar 

  6. C. elegans Sequence Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  7. Mello CC, Kramer JM, Stinchcomb D et al (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

    PubMed  CAS  Google Scholar 

  8. Hashmi S, Britton C, Liu J et al (2002) Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 277:3477–3486

    Article  PubMed  CAS  Google Scholar 

  9. Robertson SM, Shetty P, Lin R (2004) Identification of lineage-specific zygotic transcripts in early Caenorhabditis elegans embryos. Dev Biol 276:493–507

    Article  PubMed  CAS  Google Scholar 

  10. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  11. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    Article  PubMed  CAS  Google Scholar 

  12. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  13. Mellerick DM, Liu H (2004) Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS. J Neurobiol 60:308–318

    Article  PubMed  CAS  Google Scholar 

  14. Geisler R, Rauch GJ, Baier H et al (1999) A radiation hybrid map of the zebrafish genome. Nat Genet 23:86–89

    Article  PubMed  CAS  Google Scholar 

  15. Woods IG, Kelly PD, Chu F et al (2000) A comparative map of the zebrafish genome. Genome Res 10:1903–1914

    Article  PubMed  CAS  Google Scholar 

  16. Ali S, van Mil HG, Richardson MK (2011) Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 6:e21076

    Article  PubMed  CAS  Google Scholar 

  17. Giles S, Boehm P, Brogan C et al (2008) The effects of ethanol on CNS development in the chick embryo. Reprod Toxicol 25:224–230

    Article  PubMed  CAS  Google Scholar 

  18. Rovasio RA, Battiato NL (1995) Role of early migratory neural crest cells in developmental anomalies induced by ethanol. Int J Dev Biol 39:421–422

    PubMed  CAS  Google Scholar 

  19. Rovasio RA, Battiato NL (2002) Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells. Alcohol Clin Exp Res 26:1286–1298

    Article  PubMed  CAS  Google Scholar 

  20. Johnson CW, Hernandez-Lagunas L, Feng W et al (2011) Vgll2a is required for neural crest cell survival during zebrafish craniofacial development. Dev Biol 357(1):269–281

    Article  PubMed  CAS  Google Scholar 

  21. Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  22. Fabro S, Smith RL, Williams RT (1965) Thalidomide as a possible biological acylating agent. Nature 208:1208–1209

    Article  PubMed  CAS  Google Scholar 

  23. Schardein JL (2000) Chemically induced birth defects, 3rd edn. Marcel Dekker, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Hansen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hansen, J.M. (2012). In Vivo Models of Developmental Toxicology. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics