Skip to main content

Fourier Transform Infrared Spectroscopy for Molecular Analysis of Microbial Cells

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

A rapid and inexpensive method to characterise chemical cell properties and identify the functional groups present in the cell wall is Fourier transform infrared spectroscopy (FTIR). Infrared spectroscopy is a well-established technique to identify functional groups in organic molecules based on their vibration modes at different infrared wave numbers. The presence or absence of functional groups, their protonation states, or any changes due to new interactions can be monitored by analysing the position and intensity of the different infrared absorption bands. Additionally, infrared spectroscopy is non-destructive and can be used to monitor the chemistry of living cells. Despite the complexity of the spectra, the elucidation of functional groups on Gram-negative and Gram-positive bacteria has been already well documented in the literature. Recent advances in detector sensitivity have allowed the use of micro-FTIR spectroscopy as an important analytical tool to analyse biofilm samples without the need of previous treatment. Using FTIR spectroscopy, the infrared bands corresponding to proteins, lipids, polysaccharides, polyphosphate groups, and other carbohydrate functional groups on the bacterial cells can now be identified and compared along different conditions. Despite some differences in FTIR spectra among bacterial strains, experimental conditions, or changes in microbiological parameters, the IR absorption bands between approximately 4,000 and 400 cm−1 are mainly due to fundamental vibrational modes and can often be assigned to the same particular functional groups. In this chapter, an overview covering the different sample preparation protocols for infrared analysis of bacterial cells is given, alongside the basic principles of the technique, the procedures for calculating vibrational frequencies based on simple harmonic motion, and the advantages and disadvantages of FTIR spectroscopy for the analysis of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coblentz WW (1911) Radiometric investigation of water of crystallization, light filters and standard absorption bands. Bull Bur Stand 7:619–663

    Google Scholar 

  2. Stair R, Coblentz WW (1935) Infrared absorption spectra of plant and animal tissue and of various other substances. J Res Nat Bur Stand 15:295–316

    Article  CAS  Google Scholar 

  3. Randall HM, Smith DW, Colm AC, Nungester WJ (1951) Correlation of biologic properties of strains of Mycobacterium with infra-red spectrums. 1. Reproducibility of extracts of M-tuberculosis as determined by infra-red spectroscopy. Am Rev Tuberc 63:372–380

    PubMed  CAS  Google Scholar 

  4. Randall HM, Smith DW, Nungester WJ (1952) Correlation of biologic properties of strains of Mycobacterium with their infrared spectrums. 2. The differentiation of 2 strains, H37Rv and H37Ra, of M-tuberculosis by means of their infrared spectrums. Am Rev Tuberc 65:477–480

    PubMed  CAS  Google Scholar 

  5. Randall HM, Smith DW (1953) Infrared spectroscopy in bacteriological research. J Opt Soc Am 43:1086–1092

    Article  PubMed  CAS  Google Scholar 

  6. Smith DW, Harrell WK, Randall HM (1954) Correlation of biologic properties of strains of Mycobacterium with their infrared spectrums. 3. Differentiation of bovine and human varieties of M.tuberculosis by means of their infrared spectrums. Am Rev Tuberc 69:505–510

    PubMed  CAS  Google Scholar 

  7. Riddle JW, Kabler PW, Kenner BA, Bordner RH, Rockwood SW, Stevenson HJR (1956) Bacterial identification by infrared spectrophotometry. J Bacteriol 72:593–603

    PubMed  CAS  Google Scholar 

  8. Norris KP (1959) Infrared spectroscopy and its application to microbiology. J Hyg (Lond) 57:326–345

    Article  CAS  Google Scholar 

  9. Burgula Y, Khali D, Kim S, Krishnan SS, Cousin MA, Gore JP, Reuhs BL, Mauer LJ (2007) Review of mid-infrared Fourier transform-infrared spectroscopy applications for bacterial detection. J Rapid Meth Autom Microbiol 15:146–175

    Article  Google Scholar 

  10. Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82

    Article  PubMed  CAS  Google Scholar 

  11. Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC (1985) Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms. J Microbiol Methods 4:79–94

    Article  PubMed  CAS  Google Scholar 

  12. Naumann D (2000) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry: applications, theory, and instrumentation. Wiley, Chichester, pp 102–131

    Google Scholar 

  13. Naumann D, Helm D, Labischinski H, Giesbrecht P (1991) The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In: Nelson WH (ed) Modern techniques for rapid microbiological analysis. VCH, New York, pp 43–96

    Google Scholar 

  14. Koenig JL, Wang S-Q, Bhargava R (2001) Peer reviewed: FTIR images. Anal Chem 73:360–369

    Article  Google Scholar 

  15. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271

    Article  PubMed  CAS  Google Scholar 

  16. Mossoba MM, Al-Khaldi SF, Kirkwood J, Fry FS, Sedman J, Ismail AA (2005) Printing microarrays of bacteria for identification by infrared micro spectroscopy. Vib Spectrosc 38:229–235

    Article  CAS  Google Scholar 

  17. Ojeda JJ, Romero-Gonzalez ME, Banwart SA (2009) Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy. Anal Chem 81:6467–6473

    Article  PubMed  CAS  Google Scholar 

  18. Orsini F, Ami D, Villa AM, Sala G, Bellotti MG, Doglia SM (2000) FT-IR microspectroscopy for microbiological studies. J Microbiol Methods 42:17

    Article  PubMed  CAS  Google Scholar 

  19. Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726

    Article  PubMed  CAS  Google Scholar 

  20. Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68:4717–4721

    Article  PubMed  CAS  Google Scholar 

  21. Wenning M, Theilmann V, Scherer S (2006) Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environ Microbiol 8:848–857

    Article  PubMed  CAS  Google Scholar 

  22. Skoog DA, Leary JJ (1992) Principles of instrumental analysis. Saunders College, Philadelphia

    Google Scholar 

  23. Coates J (2006) Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. Wiley

    Google Scholar 

  24. Conley RT (1972) Infrared Spectroscopy. Allyn and Bacon, Boston

    Google Scholar 

  25. Dittrich M, Sibler S (2005) Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy. J Colloid Interface Sci 286:487–495

    Article  PubMed  CAS  Google Scholar 

  26. Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB (2004) Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442

    Article  PubMed  CAS  Google Scholar 

  27. Ojeda JJ, Romero-Gonzalez ME, Bachmann RT, Edyvean RGJ, Banwart SA (2008) Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 24:4032–4040

    Article  PubMed  CAS  Google Scholar 

  28. Wade LG (1995) Organic Chemistry. Prentice-Hall, New Jersey

    Google Scholar 

  29. Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc 26:151–159

    Article  CAS  Google Scholar 

  30. Schmitt J, Flemming HC (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeterior Biodegrad 41:1–11

    Article  CAS  Google Scholar 

  31. Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  PubMed  CAS  Google Scholar 

  32. Smith BC (1996) Fundamentals of Fourier transform infrared spectroscopy. CRC, Boca Raton

    Google Scholar 

  33. De la Cruz C (2000) Caracterización por FTIR de metales soportados. In: Taller de Caracterización Básica de Materiales Catalíticos y Adsorbentes. Mérida, Venezuela: CYTED-CONICIT

    Google Scholar 

  34. Al-Qadiri HM, Al-Holy MA, Lin M, Alami NI, Cavinato AG, Rasco BA (2006) Rapid detection and identification of Pseudomonas aeruginosa and Escherichia coli as pure and mixed cultures in bottled drinking water using Fourier transform infrared spectroscopy and multivariate analysis. J Agric Food Chem 54:5749–5754

    Article  PubMed  CAS  Google Scholar 

  35. Harz A, Rosch P, Popp J (2009) Vibrational spectroscopy-a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75A:104–113

    Article  CAS  Google Scholar 

  36. Huang WE, Hopper D, Goodacre R, Beckmann M, Singer A, Draper J (2006) Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. J Microbiol Methods 67:273–280

    Article  PubMed  CAS  Google Scholar 

  37. Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2:13–28

    Article  PubMed  CAS  Google Scholar 

  38. Goodacre R, Timmins EM, Rooney PJ, Rowland JJ, Kell DB (1996) Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 140:233–239

    Article  PubMed  CAS  Google Scholar 

  39. Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct 347:399–405

    Article  CAS  Google Scholar 

  40. Busalmen JP, de Sanchez SR, Schiffrin DJ (1998) Ellipsometric measurement of bacterial films at metal-electrolyte interfaces. Appl Environ Microbiol 64:3690–3697

    PubMed  CAS  Google Scholar 

  41. Beveridge TJ (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol 72:229–317

    Article  PubMed  CAS  Google Scholar 

  42. Bouhedja W, Sockalingum GD, Pina P, Allouch P, Bloy C, Labia R, Millot JM, Manfait M (1997) ATR-FTIR spectroscopic investigation of E. coli transconjugants [beta]-lactams-resistance phenotype. FEBS Lett 412:39–42

    Article  PubMed  CAS  Google Scholar 

  43. Holman H-YN, Miles R, Hao Z, Wozei E, Anderson LM, Yang H (2009) Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy. Anal Chem 81:8564–8570

    Article  PubMed  CAS  Google Scholar 

  44. Moss DA, Keese M, Pepperkok R (2005) IR microspectroscopy of live cells. Vib Spectrosc 38:185–191

    Article  CAS  Google Scholar 

  45. Beech IB (2004) Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. Int Biodeterior Biodegrad 53:177–183

    Article  CAS  Google Scholar 

  46. Bosch A, Minan A, Vescina C, Degrossi J, Gatti B, Montanaro P, Messina M, Franco M, Vay C, Schmitt J, Naumann D, Yantorno O (2008) Fourier transform infrared spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol 46:2535–2546

    Article  PubMed  CAS  Google Scholar 

  47. Curk MC, Peladan F, Hubert JC (1994) Fourier-transform infrared (FTIR) spectroscopy for identifying Lactobacillus species. FEMS Microbiol Lett 123:241–248

    Article  CAS  Google Scholar 

  48. Garip S, Gozen AC, Severcan F (2009) Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem 113:1301–1307

    Article  CAS  Google Scholar 

  49. Kirschner C, Maquelin K, Pina P, Thi NAN, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39:1763–1770

    Article  PubMed  CAS  Google Scholar 

  50. Savic D, Jokovic N, Topisirovic L (2008) Multivariate statistical methods for discrimination of lactobacilli based on their FTIR spectra. Dairy Sci Technol 88:273–290

    Article  CAS  Google Scholar 

  51. Eboigbodin KE, Ojeda JJ, Biggs CA (2007) Investigating the surface properties of Escherichia coli under glucose controlled conditions and its effect on aggregation. Langmuir 23:6691–6697

    Article  PubMed  CAS  Google Scholar 

  52. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76:4452–4458

    Article  PubMed  CAS  Google Scholar 

  53. Delille A, Quiles F, Humbert F (2007) In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Appl Environ Microbiol 73:5782–5788

    Article  PubMed  CAS  Google Scholar 

  54. Hacura A, Wrzalik R, Matuszewska A (2003) Application of reflectance micro-infrared spectroscopy in coal structure studies. Anal Bioanal Chem 375:324–326

    PubMed  CAS  Google Scholar 

  55. Mastalerz M, Bustin RM (1995) Application of reflectance micro-Fourier transform-infrared spectrometry in studying coal macerals—comparison with other Fourier-transform infrared techniques. Fuel 74:536–542

    Article  CAS  Google Scholar 

  56. Mastalerz M, Bustin RM (1996) Application of reflectance micro-Fourier transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada. Int J Coal Geol 32:55–67

    Article  CAS  Google Scholar 

  57. Perry SF (1998) Freeze-drying and cryopreservation of bacteria. Mol Biotechnol 9:59–64

    Article  PubMed  CAS  Google Scholar 

  58. Sourek J (1974) Long-term preservation by freeze-drying of pathogenic bacteria of Czechoslovak National Collection of Type Cultures. Int J Syst Bacteriol 24:358–365

    Article  Google Scholar 

  59. Landa AS, van der Mei HC, Busscher HJ (1997) Detachment of linking film bacteria from enamel surfaces by oral rinses and penetration of sodium lauryl sulphate through an artificial oral biofilm. Adv Dent Res 11:528–538

    Article  PubMed  CAS  Google Scholar 

  60. Ojeda JJ, Romero-Gonzalez ME, Pouran HM, Banwart SA (2008) In situ monitoring of the biofilm formation of Pseudomonas putida on hematite using flow-cell ATR-FTIR spectroscopy to investigate the formation of inner-sphere bonds between the bacteria and the mineral. Mineral Mag 72:101–106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús J. Ojeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ojeda, J.J., Dittrich, M. (2012). Fourier Transform Infrared Spectroscopy for Molecular Analysis of Microbial Cells. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics