Skip to main content

Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts

  • Protocol
  • First Online:
Book cover Somatic Stem Cells

Abstract

The successful isolation and ex vivo expansion of resident cardiac stem/progenitor cells from human heart biopsies has allowed us to study their biological characteristics and their applications in therapeutic approaches for the repair of ischemic/infarcted heart, the preparation of tissue-engineered cardiac grafts and, possibly, the design of cellular kits for drug screening applications. From the first publication of the original method in 2004, several adjustments and slight changes have been introduced to optimize and adjust the procedure to the evolving experimental and translational needs. Moreover, due to the wide applicability of such a method (which is based on the exploitation of intrinsic functional properties of cells with regenerative properties that are present in most tissues), the key steps of this procedure have been used to derive several kinds of tissue-specific adult stem cells for preclinical or clinical purposes.

In order to define the original procedure, complete with the up-to-date modifications introduced through the years, an exhaustive description of the current protocol is performed in this chapter, with particular attention in highlighting critical steps and troubleshoots. The procedure described here consists of modular steps, that could be employed to derive cells from any kind of tissue biopsy, and needs to be considered the gold standard of all the so-called “explant methods” or “cardiosphere methods,” and it represents a milestone in the clinical translation of autologous cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kajstura J et al (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95:8801–8805

    Article  PubMed  CAS  Google Scholar 

  2. Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83:1–14

    Article  PubMed  CAS  Google Scholar 

  3. Chimenti I et al (2011) Evidence for the existence of resident cardiac stem cells (Chapter 9). In: Cohen IS, Gaudette GR (eds) Regenerating the heart, 1st edn. Springer Science+Business Media, New York

    Google Scholar 

  4. Limana F et al (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101: 1255–1265

    Article  PubMed  CAS  Google Scholar 

  5. Ott HC (2006) The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med 4:S27–S39

    Article  Google Scholar 

  6. Pfister O et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    Article  PubMed  CAS  Google Scholar 

  7. Laugwitz KL et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  PubMed  CAS  Google Scholar 

  8. Messina E et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  PubMed  CAS  Google Scholar 

  9. Martin CM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    Article  PubMed  CAS  Google Scholar 

  10. Oh H et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318

    Article  PubMed  CAS  Google Scholar 

  11. Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  12. Hierlihy AM et al (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243

    Article  PubMed  CAS  Google Scholar 

  13. Gaetani R et al (2009) New perspectives to repair a broken heart. Cardiovasc Hematol Agents Med Chem 7:91–107

    PubMed  CAS  Google Scholar 

  14. Barile L et al (2007) Endogenous cardiac stem cells. Prog Cardiovasc Dis 50:31–48

    Article  PubMed  CAS  Google Scholar 

  15. Cai J et al (2004) In search of “stemness”. Exp Hematol 32:585–598

    Article  PubMed  Google Scholar 

  16. Davis DR et al (2010) Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J Mol Cell Cardiol 49:312–321

    Article  PubMed  CAS  Google Scholar 

  17. Altomare C et al (2010) Caffeine-induced Ca(2+) signaling as an index of cardiac progenitor cells differentiation. Basic Res Cardiol 105:737–749

    Article  PubMed  CAS  Google Scholar 

  18. Smith RR et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  19. Davis DR et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One 4: e7195

    Article  PubMed  Google Scholar 

  20. Johnston PV et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120:1075–1083

    Article  PubMed  CAS  Google Scholar 

  21. Li TS et al (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28(11):2088–2098

    Article  PubMed  CAS  Google Scholar 

  22. Malliaras K et al (2010) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. AHA scientific session 2010. Circulation 122(21):A19030

    Google Scholar 

  23. Terrovitis J et al (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54:1619–1626

    Article  PubMed  Google Scholar 

  24. Lee ST et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57:455–465

    Article  PubMed  Google Scholar 

  25. Smith RR et al (2008) Unselected human cardiosphere-derived cells are functionally superior to c-Kit- or CD90-purified cardiosphere-derived cells. AHA scientific session 2008. Circulation 118:S420

    Google Scholar 

  26. Bearzi C et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073

    Article  PubMed  CAS  Google Scholar 

  27. Bearzi C et al (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 106:15885–15890

    Article  PubMed  CAS  Google Scholar 

  28. Bearzi C et al (2005) Characterization and growth of human cardiac stem cells. AHA scientific session. Circulation 111(13):1720

    Google Scholar 

  29. Galvez BG et al (2008) Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death Differ 15:1417–1428

    Article  PubMed  CAS  Google Scholar 

  30. Dellavalle A et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9: 255–267

    Article  PubMed  CAS  Google Scholar 

  31. Galvez BG et al (2009) Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency. Cardiovasc Res 83: 707–716

    Article  PubMed  CAS  Google Scholar 

  32. Morosetti R et al (2006) MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc Natl Acad Sci U S A 103: 16995–17000

    Article  PubMed  CAS  Google Scholar 

  33. Huang Y et al (2009) Kidney-derived stromal cells modulate dendritic and T cell responses. J Am Soc Nephrol 20:831–841

    Article  PubMed  CAS  Google Scholar 

  34. Puglisi MA et al (2008) Identification and characterization of a novel expandable adult stem/progenitor cell population in the human exocrine pancreas. J Endocrinol Invest 31: 563–572

    PubMed  CAS  Google Scholar 

  35. Fierabracci A et al (2008) Identification of an adult stem/progenitor cell-like population in the human thyroid. J Endocrinol 198: 471–487

    Article  PubMed  CAS  Google Scholar 

  36. Chimenti I et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980

    Article  PubMed  CAS  Google Scholar 

  37. Gaetani R et al (2009) Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res 82:411–420

    Article  PubMed  CAS  Google Scholar 

  38. Terrovitis J et al (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52:1652–1660

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

IC, RG and EF were supported by a Pasteur Institute—Cenci Bolognetti Foundation fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giacomello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chimenti, I. et al. (2012). Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts. In: Singh, S. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 879. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-815-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-815-3_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-814-6

  • Online ISBN: 978-1-61779-815-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics