Skip to main content

Lipases as Biocatalysts for the Synthesis of Structured Lipids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CAL B:

Candida antarctica lipase B

CL:

Cardiolipin

CB:

Cocoa butter

CBEs:

Cocoa butter equivalents

FA:

Fatty acid

GRAS:

Generally recognized as safe

LCFAs, C12-C24:

Long-chain fatty acids

LCTs:

Long-chain triacylglycerols

MLCTs:

Medium- and long-chain triacylglycerols

MCTs:

Medium-chain triacylglycerols

MCFAs, C6-C10:

Medium-chain fatty acids

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

PLA1 :

Phospholipase A1

PLA2 :

Phospholipase A2

PL:

Phospholipid

RSM:

Response surface methodology

RBOSL:

Rice bran oil structured lipid

SFC:

Solid fat content

TAGS:

Triacylglycerol species

References

  1. Bi Y (2005) Property and application of oil and fat. In: Bi Y, Guo Z, Yang T (eds) Fat and oil chemistry. Chemical Industrial Press, Beijing

    Google Scholar 

  2. Shukla VKS (1996) Confectionery fats. In: Hamilton R J (ed) Developments in oils and fats. Blackie Academic & Professional, Glasgow

    Google Scholar 

  3. Liu K, Chang H, Liu K (2007) Enzymatic synthesis of cocoa butter analog through interesterification of lard and tristearin in supercritical carbon dioxide by lipase. Food Chem 100:1303–1311

    Article  CAS  Google Scholar 

  4. Rozendaal A, Macrae AR (1997) Interesteri-fication of oils and fats. In: Gunstone FD, Padley FB (eds) Lipid technologies and applications. Marcel Dekker Inc, New York

    Google Scholar 

  5. Yang T (2002) Enzymatic production of human milk fat substitutes: PhD Thesis. Beijing, Agricultural University of China

    Google Scholar 

  6. Xu X, Skands ARH, Høy CE, Mu H, Balchen S, Adler-Nissen J (1998) Production of specific-structured lipids by enzymatic interesterification: Elucidation of acyl migration by response surface design. J Am Oil Chem Soc 75:1179–1186

    CAS  Google Scholar 

  7. Eigtved P (1992) Enzymes and lipid modification. In: Padley FB (ed) Advances in applied lipid research. JAI Press Ltd, London

    Google Scholar 

  8. Brady RL, Brzozowski AM, Derewenda ZS et al (1990) A serine proteases triad forms the catalytic center of a triacylglycerol lipase. Nature 343:757–770

    Article  Google Scholar 

  9. Derewenda ZS (1994) Structure and function of lipases. Adv Protein Chem 45:1–52

    Article  PubMed  CAS  Google Scholar 

  10. Wong DWS (1995) Food enzymes: structure and mechanism. Chapman & Hall, New York

    Google Scholar 

  11. Fernandez P, Cabral JMS, Pinheiro HM (1998) Stability of free and immobilized mycobacterium sp. cells in aqueous and organic media. In: Ballesteros A, Plou FJ, Iborra JL, Halling PJ (eds) Stability and stabilization of biocatalysts. Elsevier Science, Amsterdam

    Google Scholar 

  12. Xu X, Høy CE, Adler-Nissen J (1998) Effects of lipid–borne compounds on the activity and stability of lipases in micro aqueous systems for lipase-catalyzed reaction. In: Ballesteros A, Plou FJ, Iborra JL, Halling PJ (eds) Stability and stabilization of biocatalysts. Elsevier Science, Amsterdam

    Google Scholar 

  13. Macrae AR, Hammond RC (1985) Present and future applications of lipases. Biotechnol Genet Eng Rev 3:193–217

    CAS  Google Scholar 

  14. Macrae AR (1989) Tailored triacylglycerols and esters. Biochem Soc Transact 17:1146–1148

    CAS  Google Scholar 

  15. Macrae AR (1992) Modifying oils-enzymatic methods. In: Shukla VKS, Gunstone FD (eds) Proceedings of oils and fats in the nineties. International Food Science Center A/S, Fredericia

    Google Scholar 

  16. Xu X, Hu X, Balchen S, Zhang G, Adler-Nissen J (1997) Pilot batch production of cocoa butter–like fats from Chinese vegetable tallow by enzymatic interesterification. In: Proceedings of international symposium on the approaches to functional cereals and oils. CCOA, Beijing

    Google Scholar 

  17. Xu X (1994) Several potential sources of edible oils and fats from tree plants in China. Malay. Oil Sci Technol 3:46–50

    Google Scholar 

  18. Xu X, Hu X, Zhang G (1994) Cocoa butter equivalents from tea seed oil by lipase-catalyzed modification. In: Proceedings of international symposium on new approaches in the production of food stuffs and intermediate products from cereal grains and oil seeds. CCOA, Beijing

    Google Scholar 

  19. Wang H, Wu H, Ho CT, Weng X (2006) Cocoa butter equivalent from enzymatic interesterification of tea seed oil and fatty acid methyl esters. Food Chem 97:661–665

    Article  CAS  Google Scholar 

  20. Yokozeki K, Yamanada S, Takinami K et al (1982) Application of immobilized lipase to region-specific interesterification of triglyceride in organic solvent. Eur J Appl Microbiol Biotechnol 14:1–5

    Article  CAS  Google Scholar 

  21. Gitlesen T, Svensson I, Adlercreutz P, Mattiasson B, Nilsson J (1995) High-oleic-acid rapeseed oil as starting material for the ­production of confectionery fats via lipase-catalyzed transesterification. Ind Crop Prods 4:167–171

    Article  CAS  Google Scholar 

  22. Sridhar R, Lakshminarayana G, Kaimal TNB (1991) Modification of selected Indian vegetable fats into cocoa butter substitutes by lipase-catalyzed ester interchange. J Am Oil Chem Soc 68:726–730

    Article  CAS  Google Scholar 

  23. Savamura N, Hashida W, Hashimoto Y, Matsuo T (1982) Methods for producing cacao butter substitute. CA 1134198 patent

    Google Scholar 

  24. Sawamura N, Matsuo T, Hashimoto Y (1991) Method for processing glyceride fats and oils. US 4985358 patent

    Google Scholar 

  25. Yamaguchi K, Fukazawa M, Shimoda T, Izumi T (2000) Enzymatic process for interesterification of fats and oils using distillation. US 6090598 patent

    Google Scholar 

  26. Okada T, Yamaguchi K (2004) Procede de production de matiere grasse glyceridique transformee. EP1400582 (A1) patent

    Google Scholar 

  27. Moore, Harry (1987) Edible fats. EP 0245076 (A2) patent

    Google Scholar 

  28. Matsuo T, Sawamura N, Hashimoto Y, Hashida W (1981) Method for producing cacao butter substitute. US 4268527 patent

    Google Scholar 

  29. Macrae, Alasdair, R (1991) Edible fats. EP0185524 patent

    Google Scholar 

  30. Halling PJ, Macrae AR (1982) Fat processing. EP0064855 patent

    Google Scholar 

  31. Macrae AR, How P (1988) Rearrangement Process. US4719178 patent

    Google Scholar 

  32. Coleman MH, Macrae AR (1980) Fat process and composition. UK patent 1577933.

    Google Scholar 

  33. Matsuo T, Sawamura N, Hashimoto Y, Hashida W (1980) Producing a cocoa butter substitute by transesterification of fats and oils. UK 2035359A patent

    Google Scholar 

  34. Quinlan P, Moore S (1993) Modification of triglycerides by lipases: process technology and its application to the production of nutritionally improved fats. Inform 4:580–585

    Google Scholar 

  35. Owusu-Ansah Y J (1994) Enzymes in lipid technology and cocoa butter substitutes. In: Kamel BS, Kakuda Y (eds) Technological advances in improved and alternative sources of lipids, Blackie Academic & Professional, London

    Google Scholar 

  36. Hashimoto Y (1993) Production of cocoa butter-like fats by enzymatic transesterification. In: Tanaka A, Tosa T et al (eds) Industrial application of immobilized biocatalysts. Marcel Dekker, Inc., New York

    Google Scholar 

  37. Jensen R, Bitman J, Carlson S et al (1995) Hand book of milk composition. Academic, San Diego

    Google Scholar 

  38. Jensen R (1999) Lipids in human milk. Lipids 34:1243–1271

    Article  PubMed  CAS  Google Scholar 

  39. Chen Z, Kwan K, Tong K et al (1997) Breast milk fatty acid composition: a comparative study between Hong Kong and Chongching Chinese. Lipids 32:1061–1067

    Article  PubMed  CAS  Google Scholar 

  40. Jensen R (1998) Human milk lipids as a model for infant formula. Lipid Technol 3:34–38

    Google Scholar 

  41. Christie W (1995) Composition and structure of milk lipids. In: Fox P (ed) Advanced Dairy Chemistry-2: Lipids. 2nd ed, Chapman & Hall, London

    Google Scholar 

  42. Clark A, Hundrieser K (1993) A lack of correction among fatty acids associated with different lipid classes in human milk. Lipids 28:157–159

    Article  PubMed  CAS  Google Scholar 

  43. Jensen C, Chen H, Fraley J et al (1996) Biochemical effects of dietary linoleic/α–linolenic acid ratio in term infants. Lipids 31:107–113

    Article  PubMed  CAS  Google Scholar 

  44. Uauy R, Hoffman D, Peirano P et al (2001) Essential fatty acids in visual and brain development. Lipids 36:885–896

    Article  PubMed  CAS  Google Scholar 

  45. Brenna J, Varamini B, Jensen R et al (2007) Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 85:1457–1464

    PubMed  CAS  Google Scholar 

  46. Lien E, Boyle F, Yuhas R, Tomarelli R, Quinlan P (1997) The effect of triglyceride positional distribution on fatty acid absorption in rats. J Pediatr Gastroenterol Nutr 25:167–174

    Article  PubMed  CAS  Google Scholar 

  47. Forsyth J (1998) Lipids and infant formulas. Nutr Res Rev 11:255–278

    Article  PubMed  CAS  Google Scholar 

  48. Zainal Z, Yusoff M (1999) Enzymatic interesterification of palm stearin and palm kernel olein. J Am Oil Chem Soc 76:1003–1008

    CAS  Google Scholar 

  49. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  PubMed  CAS  Google Scholar 

  50. Tecelao C, Silva J, Dubreucq E et al (2010) Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/acyltransferase. J Mol Catal B Enzym 65:122–127

    Article  CAS  Google Scholar 

  51. Mukherjee K, Kiewitt I (1998) Structured triacylglycerols resembling human milk fat by transesterification catalyzed by papaya latex. Biotechnol Lett 20:613–616

    Article  CAS  Google Scholar 

  52. Yang T, Xu X, He C, Li L (2003) Lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chem 80:473–481

    Article  CAS  Google Scholar 

  53. Soumanou M, Bornscheuer U, Schmid R (1998) Two-step enzymatic reaction for the synthesis of pure structured triacylglycerides. J Am Oil Chem Soc 75:703–710

    Article  CAS  Google Scholar 

  54. Schmid U, Bornscheuer U, Soumanou M, McNeill G, Schmid R (1998) Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. J Am Oil Chem Soc 75:1527–1531

    Article  CAS  Google Scholar 

  55. Schmid U, Bornscheuer, U, Soumanou et al (1999) Highly selective synthesis of 1,3–oleoyl–2–palmitoylglycerol by lipase catalysis. Biotechnol Bioeng 64:678–684

    Google Scholar 

  56. Akimmoto K, Yaguchi T, Fujikawa S (1999) Novel triglyceride and composition comprising the same. EP 0965 578 A1

    Google Scholar 

  57. Shimada Y, Nagao T, Hamasaki Y et al (2000) Enzymatic synthesis of structured lipid containing arachidonic and palmitic acids. J Am Oil Chem Soc 77:89–93

    Article  CAS  Google Scholar 

  58. Koji N, Teruyoshi Y (2010) Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharma Res 61(3):208–212

    Article  CAS  Google Scholar 

  59. Aoyama T, Nosaka N, Kasai M (2007) Research on the nutritional characteristics of medium-chain fatty acids. J Med Invest 54:385–388

    Article  PubMed  Google Scholar 

  60. Babayan VK (1987) Medium chain triglycerides and structured lipids. Lipids 22: 417–420

    Article  PubMed  CAS  Google Scholar 

  61. Hashim SA, Tantibhedyangkul P (1987) Medium chain triglyceride in early life: Effects on growth of adipose tissue. Lipids 22:429–434

    Article  PubMed  CAS  Google Scholar 

  62. Papamandjaris AA, MacDougall DE, Jones PJH (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62:1203–1215

    Article  PubMed  CAS  Google Scholar 

  63. Takeuchi H, Sekine S, Kojima K, Aoyama T (2008) The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation. Asia Pac J Clin Nutr 17:320–323

    PubMed  CAS  Google Scholar 

  64. Koh SP, Long K, Tan CP et al (2011) The use of enzymatically synthesized medium- and long-chain triacylglycerols (MLCT) oil blends in food application. Int Food Res J 18:355–366

    CAS  Google Scholar 

  65. Rubin M, Moser A, Vaserberg N et al (2000) Structured triacylglycerol emulsion, containing both medium- and long-chain fatty acids, in long-term home parenteral nutrition: a double-blind randomized cross-over study. Nutrition 16:5–100

    Article  Google Scholar 

  66. Kim BH, Akoh CC (2005) Modelling of lipase catalyzed acidolysis of sesame oil and caprylic acid by response surface methodology: Optimization of reaction conditions by considering both acyl incorporation and migration. J Agric Food Chem 53:033–8037

    Google Scholar 

  67. Matulka RA, Noguchi O, Nosaka N (2006) Safety evaluation of a medium-and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil. Food Chem Toxicol 44:530–1538

    Google Scholar 

  68. Bendixen H, Flint HA, Raben A et al (2002) Effect of modified fats and a conventional fat on appetite, energy intake, energy expenditure and substrate oxidation in healthy men. Am J Clin Nutr 75:47–56

    PubMed  CAS  Google Scholar 

  69. Kasai M, Nosaka N, Maki H et al (2003) Effect of dietary medium- and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pacific J of Clin Nut 12:151–160

    CAS  Google Scholar 

  70. Matsuo T, Takeuchi H (2004) Effects of structured medium- and long-chain triacylglycerols in diets with various levels of fat on body fat accumulation in rats. British J Nut 91:219–125

    Article  CAS  Google Scholar 

  71. Shinohara H, Shimada H, Noguchi O et al (2002) Effect of medium-chain fatty acids containing dietary oil on hepatic fatty acid oxidation enzyme activity in rats. J Oleo Sci 51:621–626

    Article  CAS  Google Scholar 

  72. Shinohara H, Ogawa A, Kasai M, Aoyama T (2005) Effect of randomly interesterified triacylglycerols containing medium- and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Biosci Biotechnol Biochem 69:1811–1818

    Article  PubMed  CAS  Google Scholar 

  73. Matsuo T, Matsuo M, Taguchi N, Takeuchi H (2001) The thermic effect is greater for structured medium- and long-chain triacylglycerols versus long-chain triacylglycerols in healthy young women. Metabolism 50:125–130

    Article  PubMed  CAS  Google Scholar 

  74. Negishi S, Itakura M, Arimoto S et al (2003) Measurement of foaming of frying oil and effect of the composition of TG on foaming. J Am Oil Chem Soc 80:471–474

    Article  CAS  Google Scholar 

  75. Shieh CJS, Akoh CC, Koehler PE (1995) Four-factor response surface optimization of the enzymatic modification of triolein to structured lipids. J Am Oil Chem Soc 72:619–623

    Article  CAS  Google Scholar 

  76. Shimada Y, Sugihara A, Maruyama K et al (1996) Production of structured lipid containing docosahexaenoicacid and caprylic acids using immobilized Rhizopus delemar lipase. J Ferment Bioeng 81:229–303

    Article  Google Scholar 

  77. Lee KT, Akoh CC (1998) Solvent-free enzymatic synthesis of structured lipids from peanut oil and caprylic acid in a stirred tank batch reactor. J Am Oil Chem Soc 75: 1533–1537

    Article  CAS  Google Scholar 

  78. Sharma V, Arora S, Wadhwa B (2001) Structured lipids and their applications. Indian Food Ind 20:52–55

    Google Scholar 

  79. Akoh CC (1998) Structured lipids. In: Akoh CC, Min DB (eds) Food lipids chemistry, nutrition, and biotechnology. Marcel Dekker, New York

    Google Scholar 

  80. Fomuso BL, Akoh CC (2002) Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Res Int 35:15–21

    Article  CAS  Google Scholar 

  81. Huang KS, Akoh CC (1996) Enzymatic synthesis of structured lipids: transesterification of triolein and caprylic acid ethyl ester. J Am Oil Chem Soc 73:245–250

    Article  CAS  Google Scholar 

  82. Lai OM, Low CT, Akoh CC (2005) Lipase-catalyzed acidolysis of palm olein and caprylic acid in a continuous bench-scale packed bed bioreactor. Food Chem 92:527–533

    Article  CAS  Google Scholar 

  83. Lee KT, Akoh CC (1998) Structured lipids: synthesis and applications. Food Rev Int 14:17–34

    Article  CAS  Google Scholar 

  84. Bektas I, Yucel S, Ustun G, Aksoy HA (2008) Production of reduced calorie structured lipid by acidolysis of tripalmitin with capric acid: optimization by response surface methodology. J Sci Food Agric 88:1927–1931

    Article  CAS  Google Scholar 

  85. Ozturk T, Ustun G, Aksoy H (2010) Production of medium-chain triacylglycerols from corn oil: optimization by response surface methodology. Bioresour Technol 101:7456–7461

    Article  PubMed  CAS  Google Scholar 

  86. Jennings BH, Akoh CC (2000) Lipase-catalyzed modification of rice bran oil to incorporate capric acid. J Agric Food Chem 48:4439–4443

    Article  PubMed  CAS  Google Scholar 

  87. Jennings BH, Akoh CC (2009) Characte-rization of a rice bran oil structured lipid. J Agric Food Chem 57:3346–3350

    Article  PubMed  CAS  Google Scholar 

  88. Zhao H, Lu Z, Lu F et al (2006) Lipase-catalyzed acidolysis of lard with caprylic acid to produce structured lipids. Int J Food Sci Tech 41:1027–1032

    Article  CAS  Google Scholar 

  89. Koh SP, Arifin N, Tan CP et al (2008) Rheological properties, oxidative stability and sensory evaluation of enzymatically synthesized medium- and long-chain triacylglycerol-based salad dressings. Eur J Lipid Sci Technol 110:1116–1126

    Article  CAS  Google Scholar 

  90. Koh SP, Tan CP, Lai OM et al (2010) Enzymatic synthesis of medium-and long-chain triacylglycerols (MLCT): optimization of process parameters using response surface methodology. Food and Bioprocess Technol 3:288–299

    Article  CAS  Google Scholar 

  91. Arifin N, Koh SP, Long K et al (2010) Modeling and optimization of Lipozyme RM IM-catalyzed esterification of medium-and long-chain triacylglycerols (MLCT) using response surface methodology. Food Bioprocess Technol. doi:10.1007/s11947-010-0325-5

  92. Takeuchi H, Itakura M, Kubota F, Taguchi N (2004) Oil or Fat Composition. US 0191391 patent

    Google Scholar 

  93. Xue C, Liu Y, Wang J et al (2009) Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in chinese hypertriglyceridemic subjects. Eur J Clin Nutr 63:879–886

    Article  PubMed  CAS  Google Scholar 

  94. Hoy CE, Xu X (2001) Structured triacylglycerols. In: Gunstone FD (ed) Structured and modified lipids. Marcel Dekker Inc, New York

    Google Scholar 

  95. Guo Z, Vikbjerg AF, Xu X (2005) Enzymatic modification of phospholipids for functional applications and human nutrition. Biotech Adv 23:203–259

    Article  CAS  Google Scholar 

  96. Hawthorne JN, Ansell GB (1982) Phospho-lipids new comprehensive biochemistry. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  97. Gabizon A, Goren D, Horowitz AT et al (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344

    Article  CAS  Google Scholar 

  98. New RRC (1993) Biological and biotechnological applications of phospholipids. In: Cevc G (ed) Phospholipid handbook. Marcel Dekker, New York

    Google Scholar 

  99. Nieuwenhuyzen WV, Thomas MC (2008) Update on vegetable lecithin and phospholipid technologies. Eur J Lipid Sci Technol 110:472–486

    Article  CAS  Google Scholar 

  100. Gunston FD (1999) Lipid synthesis and manufacture. Sheffield Academic Press, Sheffield

    Google Scholar 

  101. Xu X, Guo Z, Zhang H et al (2006) Chemical and enzymatic interesterification of lipids for use in foods; b. Production separation and modification of phospholipids for use in food. In: Gunstone FD (ed) Modifying lipids for use in food. Woodhead Publising Limited, Cambridge

    Google Scholar 

  102. Xu X, Vikbjerg AF, Guo Z et al (2008) Enzymatic modification of phospholipids and related polar lipids; b. Uses of phospholipids as functional ingredients. In: Gunstone FD (ed) Phospholipid technology and processing. The oily press, Bridgwater

    Google Scholar 

  103. Vikbjerg AF, Mu H, Xu X (2005) Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent free system. J Mol Cat B Enzym 36:14–21

    Article  CAS  Google Scholar 

  104. Vikbjerg AF, Peng L, Mu H, Xu X (2005) Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa. J Am Oil Chem Soc 82:237–242

    Article  CAS  Google Scholar 

  105. Vikbjerg AF, Jonsson G, Mu H, Xu X (2006) Application of ultrafiltration membranes for purification of structured phospholipids produced by lipase-catalyzed acidolysis. Sep Pur Tech 50:184–191

    Article  CAS  Google Scholar 

  106. Vikbjerg AF, Rusig JY, Jonsson G et al (2006) Strategies for lipase-catalyzed production and the purification of structured phospholipids. Eur J Lipid Sci Technol 108:802–811

    Article  CAS  Google Scholar 

  107. Vikbjerg AF, Mu H, Xu X (2006) Elucidation of acyl migration during lipase-catalyzed production of structured phospholipids. J Am Oil Chem Soc 83:609–614

    Article  CAS  Google Scholar 

  108. Vikbjerg AF, Mu H, Xu X (2007) Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis. J Biotech 128:545–554

    Article  CAS  Google Scholar 

  109. Reddy JRC, Vijeeta T, Karuna MSL et al (2005) Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidyl choline. J Am Oil Chem Soc 82:727–730

    Article  CAS  Google Scholar 

  110. Reddy JRC, Rao BVSK, Karuna MSL et al (2008) Lipase-catalyzed preparation of stearic acid-rich phospholipids. J Lipid Sci Technol 40:124–128

    CAS  Google Scholar 

  111. Totani Y, Hara S (1991) Preparation of polyunsaturated phospholipids by lipase-catalyzed transesterification. J Am Oil Chem Soc 68:848–851

    Article  CAS  Google Scholar 

  112. Mutua LN, Akoh CC (1993) Lipase-catalyzed modification of phospholipids: Incorporation of n-3 fatty acids into biosurfactants. J Am Oil Chem Soc 70:125–128

    Article  CAS  Google Scholar 

  113. Hosokawa M, Takahashi K, Miyazaki N et al (1995) Preparation of therapeutic phospholipids through porcine pancreatic phospholipase A2-mediated esterification and lipozyme–mediated acidolysis. J Am Oil Chem Soc 72:1287–1291

    Article  CAS  Google Scholar 

  114. Haraldsson GG, Thorarensen A (1999) Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J Am Oil Chem Soc 76:1143–1149

    Article  CAS  Google Scholar 

  115. Park CW, Kwon SJ, Han JJ, Rhee JS (2000) Transesterification of phosphatidylcholine with eicosapentaenoic acid ethyl ester using phospholipase A2 in organic solvent. Biotechnol Lett 22:147–150

    Article  CAS  Google Scholar 

  116. Monjur Hossen M (2005) Enzyme-catalyzed synthesis of structured phospholipids with conjugated linoleic acid and plant sterols, PhD thesis, Texas A & M University

    Google Scholar 

  117. Yazawa K, Watanabe K, Ishikawa C et al (1992) In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. Champaign, AOCS Press

    Google Scholar 

  118. Suzuki M, Asahi K, Isono K et al (1992) Differentiation inducing phosphatidyl choline(s) from the embryos of rainbow trout (Salmo gairdneri): Isolation and structural elucidation. Devel Growth Diff 34:301–307

    Article  CAS  Google Scholar 

  119. Kohono H, Ota T, Maeda M et al (1992) Proc Jpn Cancer Assoc 51:398

    Google Scholar 

  120. Matsumoto K, Morita I, Hibino H, Murota S (1993) Inhibitory effect of docosahexaenoic acid-containing phospholipids on 5-lipoxygenase in rat basophilic leukemia cells. Prostaglandins, Leucotriens Essential Fatty acids 49:861–866

    Article  CAS  Google Scholar 

  121. Ekstrand B, Erickson C, Holmberg K, Osterberg E (1988) Sweedish patent application. 88-02095-3

    Google Scholar 

  122. Schneider M (2001) Phospholipids for functional food. Eur J Lipid Sci Technol 103:98–101

    Article  CAS  Google Scholar 

  123. Hosokawa M, Minami K, Kohno H et al (1999) Differentiation-and apotosis-inducing activities of phospholipids containing docosahexaenoicacid for mouse myeloid leukemia M1 cells. Fish Sci 65:798–799

    CAS  Google Scholar 

  124. Eibl H, Unger C (1988) Phospholipids-selective drugs in cancer therapy. Proc Soc Exp Biol Med 29:358

    Google Scholar 

  125. Sakai K, Okuyama H, Yura J et al (1992) Composition and turnover of phospholipids and neutral lipids in human breast cancer and reference tissues. Carcinogenesis 13: 578–584

    Article  Google Scholar 

  126. Song JK, Han JJ, Rhee JS (2005) Phospholipases: Occurrence and production in microorganisms, assay for high throughput screening, and gene discovery from natural and manmade diversity. J Am Oil Chem Soc 82:691–705

    Article  CAS  Google Scholar 

  127. Xu X (2000) Enzyme bioreactors for lipid modification. Inform 11:1104–1112

    Google Scholar 

  128. Malcata FX, Reyes HR, Garcia HS et al (1990) Immobilized lipase reactors for modification of fats and oils – a review. J Am Oil Chem Soc 67:890–910

    Article  CAS  Google Scholar 

  129. Härröd M, Elfman I (1995) Enzymatic synthesis of phosphatidylcholine with fatty acids, isooctane, carbon dioxide, and propane as solvents. J Am Oil Chem Soc 72: 641–646

    Article  Google Scholar 

  130. Svensson I, Adlercreutz P, Mattiasson B (1992) Lipase-catalyzed transesterification of phosphatidylcholine at controlled water activity. J Am Oil Chem Soc 69:986–991

    Article  CAS  Google Scholar 

  131. Mustranta A, Suorti T, Poutanen K (1994) a) Transesterification of phospholipids in different reaction conditions. J Am Oil Chem Soc 71:1415–1419

    Article  CAS  Google Scholar 

  132. Mustranta A, Forsell P, Aura AM, Suortti T, Poutanen K (1994) Modification of phospholipids with lipases and phospholipases. Biocatal 9:181–194

    Article  CAS  Google Scholar 

  133. Aura AM, Forssell P, Mustranta A, Poutanen K (1995) Transesterification of soy lecithin by lipase and phospholipase. J Am Oil Chem Soc 72:1375–1379

    Article  CAS  Google Scholar 

  134. Hara F, Nakashima T (1996) Transesterification of phospholipids by acetone-dried cells of a Rhizopus species immobilized on biomass support particles. J Am Oil Chem Soc 73:657–659

    Article  CAS  Google Scholar 

  135. Peng L, Xu X, Mu H et al (2002) Production of structured phospholipids by lipase-catalyzed acidolysis: optimization using response surface methodology. Enzyme Microb Technol 31:523–532

    Article  CAS  Google Scholar 

  136. Hara S, Hasuo H, Nakasato M et al (2002) Modification of soybean phospholipids by enzymatic transacylation. J Oleo Sci 51:417–421

    Article  CAS  Google Scholar 

  137. Doig SD, Diks RMM (2003) Toolbox for exchanging constituent fatty acids in lecithins. Eur J Lipid Sci Technol 105:359–367

    Article  CAS  Google Scholar 

  138. Na A, Eriksson C, Erikson S et al (1990) Synthesis of phosphatidylcholine with (n-3) fatty acids by phospholipase A2 in micro emulsion. J Am Oil Chem Soc 67:766–770

    Article  CAS  Google Scholar 

  139. Vijeeta T, Reddy JRC, Rao BVSK et al (2004) Phospholipase-mediated preparation of 1-ricinoleoyl-2-acyl-sn-glycero-3-Phosphocholine from soya and egg phosphatidylcholine. Biotechnology Lett 26:1077–1080

    Article  CAS  Google Scholar 

  140. Pernas P, Olivier JL, Legoy MD, Bereziat G (1990) Phospholipid synthesis by extracellular phospholipase A2 in organic solvents. Biochem Biophys Res Commun 168:644–650

    Article  PubMed  CAS  Google Scholar 

  141. Kim IH, Garcia HS, Hills CG Jr (2007) Phospholipase A1-catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enzyme Microb Technol 40:1130–1135

    Article  CAS  Google Scholar 

  142. Rice Evans CA, Miller NJ, Paganga G (1996) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237

    Google Scholar 

  143. Murakami A, Nakamura Y, Koshimizu K et al (2002) H. FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: comparison with ferulic acid. Cancer Lett 180:121–129

    Article  PubMed  CAS  Google Scholar 

  144. Figueroa-Espinoza MC, Villeneuve P (2005) Phenolic acids enzymatic lipophilization. J Agric Food Chem 53:2779–2787

    Article  PubMed  CAS  Google Scholar 

  145. Liu HL, Kong LY, Takaya Y, Niwa M (2005) Biotransformation of ferulic acid into two new dihydrotrimers by Momordica charantia peroxidase. Chem Pharm Bull 53:816–819

    Article  PubMed  CAS  Google Scholar 

  146. Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro–Riviere NA, Grichnik JM, Zielinski J, Pinnell SR (2005) Ferulic acid stabilizes a solution of vitamins C and E and doubles its photo protection of skin. J Invest Dermato 125: 826–832

    Google Scholar 

  147. Condo AMJ, Baker DC, Moreau RA, Hicks KB (2001) Improved method for the synthesis of trans-feruloyl-β-sitostanol. J Agric Food Chem 49:4961–4964

    Article  PubMed  CAS  Google Scholar 

  148. Compton DL, Laszlo JA, Berhow MA (2000) Lipase-catalyzed synthesis of ferulate esters. J Am Oil Chem Soc 77:513–519

    Article  CAS  Google Scholar 

  149. Giuliani S, Piana S, Setti L, Hochkoeppler A, Pifferi PG, Williamson G, Faulds CB (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil micro emulsions. Biotechnol Lett 23:325–330

    Article  CAS  Google Scholar 

  150. Vosmann L, Weitkamp P, Weber N (2006) Solvent-free lipase-catalyzed preparation of long-chain alkyl phenyl propanoates and phenylpropyl alkanoates. J Agric Food Chem 54:2969–2976

    Article  PubMed  CAS  Google Scholar 

  151. Sabally K, Karboune S, St–Louis R, Kermasha S (2006) Lipase-catalyzed transesterification of trilinolein or trilinolenin with selected phenolic acids. J Am Oil Chem Soc 83:101–107

    Google Scholar 

  152. Zheng Y, Wu Xiao M, Branford–White C et al (2009) Enzymatic synthesis and characterization of novel feruloylated lipids in selected organic media. J Mol Catal B Enzym 58:65–71

    Google Scholar 

  153. Zheng Y, Quan J, Zhu LM et al (2008) Optimization of selective lipase-catalyzed feruloylated monoacylglycerols by response surface methodology. J Am Oil Chem Soc 85:635–639

    Article  CAS  Google Scholar 

  154. Laszlo JA, Compton DL, Eller FJ et al (2003) Packed-bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols: clean production of a “green” sunscreen. Green Chem 5:382–386

    Article  CAS  Google Scholar 

  155. Xin JY, Zhang L, Chen LL et al (2009) Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium. Food Chem 112:640–645

    Article  CAS  Google Scholar 

  156. Sun SD, Shan L, Liu YF et al (2007) A novel, two consecutive enzyme syntheses of feruloylated monoacyl- and diacylglycerols in a solvent-free system. Biotechnol Lett 29:1947–1950

    Article  PubMed  CAS  Google Scholar 

  157. Compton D, Laszlo JA, Berhow MA (2006) Identification and quantification of feruloylated mono-, di-, and triacylglycerols from vegetable oils. J Am Oil Chem Soc 83:753–758

    Article  CAS  Google Scholar 

  158. Compton DL, King JW (2001) Lipase-catalyzed synthesis of triolein-based sunscreens in supercritical CO2. J Am Oil Chem Soc 78:43–47

    Article  CAS  Google Scholar 

  159. Sun SD, Shan L, Liu YF (2008) Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized of feruloylated monoacylglycerols optimized by response surface methodology. J Agric Food Chem 56:442–447

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jala, R.C.R., Hu, P., Yang, T., Jiang, Y., Zheng, Y., Xu, X. (2012). Lipases as Biocatalysts for the Synthesis of Structured Lipids. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics