Skip to main content

DNA Barcoding Methods for Invertebrates

  • Protocol
  • First Online:
DNA Barcodes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 858))

Abstract

Invertebrates comprise approximately 34 phyla, while vertebrates represent one subphylum and insects a (very large) class. Thus, the clades excepting vertebrates and insects encompass almost all of animal diversity. Consequently, the barcoding challenge in invertebrates is that of barcoding animals in general. While standard extraction, cleaning, PCR methods, and universal primers work for many taxa, taxon-specific challenges arise because of the shear genetic and biochemical diversity present across the kingdom, and because problems arising as a result of this diversity, and solutions to them, are still poorly characterized for many metazoan clades. The objective of this chapter is to emphasize general approaches, and give practical advice for overcoming the diverse challenges that may be encountered across animal taxa, but we stop short of providing an exhaustive inventory. Rather, we encourage researchers, especially those working on poorly studied taxa, to carefully consider methodological issues presented below, when standard approaches perform poorly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    CAS  Google Scholar 

  2. Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311: 1727–1730

    PubMed  CAS  Google Scholar 

  3. Davison A, Blackie RLE, Scothern GP (2009) DNA barcoding of stylommatophoran land snails: a test of existing sequences. Mol Ecol Resour 9:1092–1101

    PubMed  CAS  Google Scholar 

  4. Creer S, Fonseca VG, Porazinska DL et al (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19(Suppl 1):4–20

    PubMed  Google Scholar 

  5. Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38: 100–116

    PubMed  CAS  Google Scholar 

  6. Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216

    Google Scholar 

  7. Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300:325–329

    PubMed  CAS  Google Scholar 

  8. Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The evolution of the genome. Academic, Waltham, MA, pp 428–501

    Google Scholar 

  9. Landry C, Geyer LB, Arakaki Y, Uehara T, Palumbi SR (2003) Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin. Proc R Soc Lond B Biol Sci 270:1839–1847

    CAS  Google Scholar 

  10. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    PubMed  Google Scholar 

  11. Coyne J, Orr H (2004) Speciation. Sinauer Associates, Sunderland, MA, p 545

    Google Scholar 

  12. Mayr E (1963) Animal species and their evolution. Harvard University Press, Cambridge, p 797

    Google Scholar 

  13. Meyer C, Geller J, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125

    PubMed  Google Scholar 

  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  15. Chen I-P, Tang C-Y, Chiou C-Y et al (2009) Comparative analyses of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants. Mar Biotechnol 11:141–152

    PubMed  CAS  Google Scholar 

  16. Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174

    PubMed  CAS  Google Scholar 

  17. McFadden CS, Benayahu Y, Pante E et al (2010) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol Resour 11:1–13

    Google Scholar 

  18. Ortman BD (2008) DNA barcoding the medu­sozoa and ctenophora. Ph.D. Dissertation, University of Connecticut, Storrs, CT

    Google Scholar 

  19. Shearer TL, Coffroth MA (2008) DNA BARCODING: barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8:247–255

    PubMed  CAS  Google Scholar 

  20. Signorovitch AY, Dellaporta SL, Buss LW (2006) Caribbean placozoan phylogeography. Biol Bull 211:149–156

    PubMed  Google Scholar 

  21. Signorovitch AY, Buss LW, Dellaporta SL (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genet 3:e13

    PubMed  Google Scholar 

  22. Wörheide G, Erpenbeck D, Menke C (2008) The Sponge Barcoding Project: aiding in the identification and description of poriferan taxa. In: Custódio M, Lôbo-Hajdu G, Haidu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional de Rio de Janiero Book Series. Rio de Janeiro, Brazil, pp 123–128

    Google Scholar 

  23. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92

    PubMed  CAS  Google Scholar 

  24. Spiess A-N-L, Mueller N, Ivell R (2004) Trehalose is a potent pcr enhancer: lowering of DNA melting temperature and thermal ­stabilization of Taq polymerase by the disaccharide trehalose. Clin Chem 50:1256–1259

    PubMed  CAS  Google Scholar 

  25. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    PubMed  CAS  Google Scholar 

  26. Templado J, Paulay G, Gittenberger A, Meyer C (2010) Sampling the marine realm. In: Eymann J, Degreef J, Häuser C et al (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories. vol 8. ABC Taxa. Belgian National Focal Point for the GTI, Brussels, pp 273–307

    Google Scholar 

  27. Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Van den Spiegel D (eds) (2010) Manual on field recording techniques and protocols for all taxa biodiversity inventories. vol 8. ABC Taxa. Belgian National Focal Point for the GTI, Brussels

    Google Scholar 

  28. Gaither M, Szabó Z, Crepeau M et al (2011) Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments. Coral Reefs 30:329–333

    Google Scholar 

  29. Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    CAS  Google Scholar 

  30. Rosengarten RD, Sperling EA, Moreno MA, Leys SP, Dellaporta SL (2008) The mitochondrial genome of the hexactinellid sponge Aphrocallistes vastus: evidence for programmed translational frameshifting. BMC Genomics 9:33

    PubMed  Google Scholar 

  31. Sinniger F, Pawlowski J (2009) The partial mitochondrial genome of Leiopathes glaberrima (Hexacorallia: Antipatharia) and the first report of the presence of an intron in COI in black corals. Galaxea 11:21–26

    Google Scholar 

  32. Fukami H, Chen CA, Chiou C-Y, Knowlton N (2007) Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of Scleractinian corals. J Mol Evol 64:591–600

    PubMed  CAS  Google Scholar 

  33. Milbury CA, Gaffney PM (2005) Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. Mar Biotechnol 7:697–712

    PubMed  CAS  Google Scholar 

  34. Hajibabaei M, DeWaard JR, Ivanova NV et al (2005) Critical factors for assembling a high volume of DNA barcodes. Philos Trans R Soc Lond B Biol Sci 360:1959–1967

    PubMed  CAS  Google Scholar 

  35. DeWaard J, Ivanova N, Hajibabaei M, Hebert P (2008) Assembling DNA barcodes. Analytical protocols. In: Martin C (ed) Methods in molecular biology. Humana, Totowa, pp 275–293

    Google Scholar 

  36. Bickley J, Hopkins D (1999) Inhibitors and enhancers of PCR. In: Saunders GC, Parkes HC (eds) Analytical molecular biology: quality and validation. Royal Society of Chemistry, Cambridge, UK, pp 81–102

    Google Scholar 

  37. Ralser M, Querfurth R, Warnatz H-J et al (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Comm 347:747–751

    PubMed  CAS  Google Scholar 

  38. Hecker KH, Roux KH (1996) High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20:478–485

    PubMed  CAS  Google Scholar 

  39. Siddall ME, Fontanella FM, Watson SC et al (2009) Barcoding bamboozled by bacteria: convergence to metazoan mitochondrial primer targets by marine microbes. Syst Biol 58:445–451

    PubMed  Google Scholar 

  40. Schubart C (2009) Mitochondrial DNA and decapod phytogenies: the importance of pseudogenes and primer optimization. In: Martin JW, Crandall KA, Felder DL (eds) Decapod crustacean phylogenetics. CRC, Boca Raton, FL, pp 47–64

    Google Scholar 

  41. Hoareau TB, Boissin E (2010) Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Mol Ecol Resour 10:960–967

    PubMed  CAS  Google Scholar 

  42. Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    PubMed  CAS  Google Scholar 

  43. Chen C, Chiou CY, Dai CF, Chen CA (2008) Unique mitogenomic features in the scleractinian family pocilloporidae (Scleractinia: Astrocoeniina). Mar Biotech 10:538–553

    CAS  Google Scholar 

  44. Rawlings TA, Collins TM, Bieler R (2003) Changing identities: tRNA duplication and remolding within animal mitochondrial genomes. Proc Natl Acad Sci USA 100:15700–15705

    PubMed  CAS  Google Scholar 

  45. Walther E, Schofl G, Mrotzek G et al (2011) Paralogous mitochondrial control region in the giant tiger shrimp, Penaeus monodon (F.) affects population genetics inference: a cautionary tale. Mol Phylgenet Evol 58:404–408

    Google Scholar 

  46. Machida R, Miya M, Nishida M, Nishida S (2006) Molecular phylogeny and evolution of the pelagic copepod genus Neocalanus (Crustacea: Copepoda). Marine Biol 148:1071–1079

    CAS  Google Scholar 

  47. Erpenbeck D, Hooper JNA, Worheide G (2006) CO1 phylogenies in diploblasts and the “Barcoding of Life” – are we sequencing a suboptimal partition? Mol Ecol Notes 6:550–553

    CAS  Google Scholar 

  48. Derycke S, Vanaverbeke J, Rigaux A et al (2010) Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS One 5:e13716

    PubMed  Google Scholar 

  49. Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Ann Rev Ecol Syst 37:545–579

    Google Scholar 

  50. Simpson R, Wilding C, Grahame J (2005) Intron analyses reveal multiple calmodulin copies in Littorina. J Mol Evol 60:505–512

    PubMed  CAS  Google Scholar 

  51. Chenuil A, Hoareau TB, Egea E et al (2010) An efficient method to find potentially universal population genetic markers, applied to metazoans. BMC Evol Biol 10:276

    PubMed  Google Scholar 

  52. Hwang UW, Kim W (1999) General properties and phylogenetic utilities of nuclear ­ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean J Parasitol 37:215

    PubMed  CAS  Google Scholar 

  53. Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485

    PubMed  CAS  Google Scholar 

  54. Harris DJ, Crandall KA (2000) Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Mol Biol Evol 17:284

    PubMed  CAS  Google Scholar 

  55. Derycke S, Fonseca G, Vierstraete A et al (2008) Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morhological tools. Zool J Linn Soc 152:1–15

    Google Scholar 

  56. Bhadury P, Austen MC (2010) Barcoding marine nematodes: an improved set of nematode 18S rRNA primers to overcome eukaryotic co-interference. Hydrobiologia 641: 245–251

    CAS  Google Scholar 

  57. Sonnenberg R, Nolte A (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool 4:6

    PubMed  Google Scholar 

  58. Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ri-bosomal RNA signature sequences. Philos Trans R Soc Lond B Biol Sci 360:1917–1924

    PubMed  CAS  Google Scholar 

  59. Cárdenas P, Rapp HT, Schander C, Tendal OS (2010) Molecular taxonomy and phylogeny of the Geodiidae (Porifera, Demospongiae, Astrophorida)–combining phylogenetic and Linnaean classification. Zoolog Scripta 39:89–106

    Google Scholar 

  60. McLain DK, Li J, Oliver JH (2001) Interspecific and geographical variation in the sequence of rDNA expansion segment D3 of Ixodes ticks (Acari: Ixodidae). Heredity 86:234–242

    PubMed  CAS  Google Scholar 

  61. Benesh DP, Hasu T, Suomalainen L-R, Valtonen ET, Tiirola M (2006) Reliability of mitochondrial DNA in an acanthocephalan: the problem of pseudogenes. Int J Parasitol 36:247–254

    PubMed  CAS  Google Scholar 

  62. Martínez-Aquino A, Reyna-Fabián ME, Rosas-Valdez R, Razo-Mendivil U, de León GP-P, García-Varela M (2009) Detecting a complex of cryptic species within Neoechi­norhynchus golvani (Acanthocephala: Neoech­inorhynchidae) inferred from ITSs and LSU rDNA gene sequences. Int J Parasitol 95:1040–1047

    Google Scholar 

  63. Steinauer ML, Nickol BB, Ortí G (2007) Cryptic speciation and patterns of phenotypic variation of a highly variable acanthocephalan parasite. Mol Ecol 16:4097–4109

    PubMed  CAS  Google Scholar 

  64. Sikes JM, Bely AE (2008) Radical modification of the A-P axis and the evolution of asexual reproduction in Convolutriloba acoels. Evol Dev 10:619–631

    PubMed  CAS  Google Scholar 

  65. Telford MJ, Herniou EA, Russell RB, Littlewood DT (2000) Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci USA 97:11359–11364

    PubMed  CAS  Google Scholar 

  66. Chang C-H, Rougerie R, Chen J-H (2009) Identifying earthworms through DNA barcodes: pitfalls and promise. Pedobiologia 52:171–180

    CAS  Google Scholar 

  67. Aguado MT, Nygren A, Siddall ME (2007) Cladistics analysis of nuclear and mitochondrial genes. Cladistics 23:552–564

    Google Scholar 

  68. Carr CM (2010) The polychaeta of canada: exploring diversity and distribution patterns using DNA barcodes. MSc Thesis, University of Guelph, Guelph, ON

    Google Scholar 

  69. James SW, Porco D, Decaëns T et al (2010) DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PLoS One 5:e15629

    PubMed  CAS  Google Scholar 

  70. Zhou H, Zhang Z, Chen H et al (2010) Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China. Chin J Oceanol Limnol 28:899–910

    CAS  Google Scholar 

  71. Bely AE, Weisblat DA (2006) Lessons from leeches: a call for DNA barcoding in the lab. Evol Dev 8:491–501

    PubMed  Google Scholar 

  72. Costa FO, Henzler CM, Lunt DH et al (2009) Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst Biod 7:365

    Google Scholar 

  73. Costa FO, DeWaard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295

    CAS  Google Scholar 

  74. Böttger-Schnack R, Machida RJ (2010) Comparison of morphological and molecular traits for species identification and taxonomic grouping of oncaeid copepods. Hydrobiologia 666:111–125

    Google Scholar 

  75. Bradford T, Adams M, Humphreys W, Austin A, Cooper S (2010) DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Mol Ecol Resour 10:41–50

    PubMed  CAS  Google Scholar 

  76. Goolsby JA, DE Barro PJ, Makinson JR, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297

    PubMed  CAS  Google Scholar 

  77. Murienne J, Edgecombe GD, Giribet G (2010) Including secondary structure, fossils and molecular dating in the centipede tree of life. Mol Phylogenet Evol 57:301–313

    PubMed  Google Scholar 

  78. Navajas M, Navia D (2010) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Exp Appl Acarol 51:257–271

    PubMed  CAS  Google Scholar 

  79. Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    CAS  Google Scholar 

  80. Radulovici AE, Sainte-Marie B, Dufresne F (2009) DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Mol Ecol Resour 9:181–187

    PubMed  CAS  Google Scholar 

  81. Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42:239–262

    PubMed  Google Scholar 

  82. Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B Biol Sci 272:1525–1534

    CAS  Google Scholar 

  83. Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Ann Rev Ecol Evol Syst 40:127–149

    Google Scholar 

  84. Cohen BL, Bitner MA, Harper EM et al (2011) Vicariance and convergence in Magellanic and New Zealand long-looped brachiopod clades (Pan-Brachiopoda: Terebratelloidea). Zoolog J Linn Soc 162. doi: 10.1111/j.1096-3642.2010.00682.x

  85. Lüter C, Cohen B (2002) DNA sequence evidence for speciation, paraphyly and a Mesozoic dispersal of cancellothyridid articulate brachiopods. Mar Biol 141:65–74

    Google Scholar 

  86. Gómez A, Wright PJ, Lunt DH et al (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc Lond B Biol Sci 274:199–207

    Google Scholar 

  87. Kon T, Nohara M, Nishida M et al (2006) Hidden ancient diversification in the circumtropical lancelet Asymmetron lucayanum complex. Mar Biol 149:875–883

    Google Scholar 

  88. Jennings RM, Bucklin A, Pierrot-Bults A (2010) Barcoding of arrow worms (Phylum Chaetognatha) from three oceans: genetic diversity and evolution within an enigmatic phylum. PLoS One 5:e9949

    PubMed  Google Scholar 

  89. Sinniger F, Reimer JD, Pawlowski J (2008) Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zoolog Sci 25:1253–1260

    PubMed  CAS  Google Scholar 

  90. Concepcion GT, Crepeau MW, Wagner D et al (2007) An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa. Coral Reefs 27:323–336

    Google Scholar 

  91. Coleman AW, van Oppen MJH (2008) Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in acroporid corals. J Mol Evol 67:389–396

    PubMed  CAS  Google Scholar 

  92. Chiou CY, Chen IP, Chen C et al (2008) Analysis of Acropora muricata Calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene. J Mol Evol 66:317–324

    PubMed  CAS  Google Scholar 

  93. Flot J-F, Magalon H, Cruaud C et al (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247

    PubMed  Google Scholar 

  94. Miranda LS, Collins AG, Marques AC (2010) Molecules clarify a cnidarian life cycle – the “hydrozoan” Microhydrula limopsicola is an early life stage of the Staurozoan Haliclystus antarcticus. PLoS One 5:e10182

    PubMed  Google Scholar 

  95. Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zoolog Scripta 37:93–108

    Google Scholar 

  96. Dawson MN (2004) Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa. Hydrobiologia 530–531: 249–260

    Google Scholar 

  97. Ortman BD, Bucklin A, Pagès F, Youngbluth M (2010) DNA barcoding the Medusozoa using mtCOI. Deep Sea Res II 57: 2148–2156

    CAS  Google Scholar 

  98. Henderson M, Okamura B (2004) The phylogeography of salmonid proliferative kidney disease in Europe and North America. Proc R Soc Lond B Biol Sci 271:1729

    Google Scholar 

  99. Whipps CM, Kent ML (2006) Phylogeography of the cosmopolitan marine parasite Kudoa thyrsites (Myxozoa: Myxosporea). J Eukaryot Microbiol 53:364–373

    PubMed  CAS  Google Scholar 

  100. Podar M, Haddock SH, Sogin ML, Harbison GR (2001) A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol Phylogenet Evol 21:218–230

    PubMed  CAS  Google Scholar 

  101. Gorokhova E, Lehtiniemi M, Viitasalo-fro S, Haddock SHD (2009) Molecular evidence for the occurrence of ctenophore Mertensia ovum in the northern Baltic Sea and implications for the status of the Mnemiopsis leidyi invasion. Limnol Oceanogr 54:2025–2033

    CAS  Google Scholar 

  102. Obst M, Funch P, Giribet G (2005) Hidden diversity and host specificity in cycliophorans: a phylogeographic analysis along the North Atlantic and Mediterranean Sea. Mol Ecol 14:4427–4440

    PubMed  CAS  Google Scholar 

  103. Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Ann Rev Ecol Evol Syst 39:63–91

    Google Scholar 

  104. Fuchs J, Iseto T, Hirose M, Sundberg P, Obst M (2010) The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa). Mol Phyl Evol 56:370–379

    Google Scholar 

  105. Todaro MA, Kånneby T, Dal Zotto M, Jondelius U (2011) Phylogeny of thaumastodermatidae (gastrotricha: macrodasyida) inferred from nuclear and mitochondrial sequence data. PLoS One 6:e17892

    PubMed  CAS  Google Scholar 

  106. Sørensen MV, Sterrer W, Giribet G (2006) Cladistics four molecular loci and morphology. Cladistics 22:32–58

    Google Scholar 

  107. Cannon JT, Rychel AL, Eccleston H, Halanych KM, Swalla BJ (2009) Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Mol Phyl Evol 52:17–24

    CAS  Google Scholar 

  108. Smith SE, Douglas R, Burke K, Swalla BJ (2003) Morphological and molecular identification of Saccoglossus species (Hemichordata: Harrimaniidae) in the Pacific Northwest. Can J Zool 141:133–141

    Google Scholar 

  109. Giribet G, Sorensen MV, Funch P et al (2004) Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics 20:1–13

    Google Scholar 

  110. Doucet-Beaupré H, Breton S, Chapman EG et al (2010) Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol Biol 10:50

    PubMed  Google Scholar 

  111. Campbell DC, Johnson PD, Williams JD et al (2008) Identification of “extinct” freshwater mussel species using DNA barcoding. Mol Ecol Resour 8:711–724

    PubMed  CAS  Google Scholar 

  112. Ghiselli F, Milani L, Passamonti M (2011) Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae). Mol Biol Evol 28:949–961

    PubMed  CAS  Google Scholar 

  113. Allcock AL, Barratt I, Eléaume M et al (2010) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res II

    Google Scholar 

  114. Kelly RP, Sarkar IN, Eernisse DJ, Desalle R (2007) DNA barcoding using chitons (genus Mopalia). Mol Ecol Notes 7:177–183

    CAS  Google Scholar 

  115. Dinapoli A, Klussmann-Kolb A (2010) The long way to diversity–phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Mol Phylogenet Evol 55:60–76

    PubMed  Google Scholar 

  116. Barr NB, Cook A, Elder P et al (2009) Application of a DNA barcode using the 16S rRNA gene to diagnose pest Arion species in the USA. J Molluscan Stud 75:187–191

    Google Scholar 

  117. Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E (2011) Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 28:1–40

    Google Scholar 

  118. Breton S, Stewart DT, Shepardson S et al (2011) Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? Mol Biol Evol 28:1645–1659

    PubMed  CAS  Google Scholar 

  119. Bourlat SJ, Nakano H, Åkerman M et al (2008) Feeding ecology of Xenoturbella bocki (phylum Xenoturbellida) revealed by genetic barcoding. Mol Ecol Resour 8:18–22

    PubMed  CAS  Google Scholar 

  120. Bhadury P, Austen MC, Bilton DT et al (2007) Exploitation of archived marine nematodes – a hot lysis DNA extraction protocol for molecular studies. Zoolog Scripta 36:93–98

    Google Scholar 

  121. De Ley P, De Ley IT, Morris K et al (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philos Trans R Soc Lond B Biol Sci 360: 1945–1958

    PubMed  Google Scholar 

  122. Mateos E, Giribet G (2008) Exploring the molecular diversity of terrestrial nemerteans (Hoplonemertea, Monostilifera, Acteonemertidae) in a continental landmass. Zoolog Scripta 37:235–243

    Google Scholar 

  123. Maslakova S, Norenburg J (2008) Revision of the smiling worms, genus Prosorhochmus Keferstein, 1862, and description of a new species, Prosorhochmus belizeanus sp. nov. (Prosorhochmidae, Hoplonemertea, Nemertea) from Florida and Belize. J Nat History 42:1219–1260

    Google Scholar 

  124. Sundberg P, Thuroczy Vodoti E, Strand M (2010) DNA barcoding should accompany taxonomy – the case of Cerebratulus spp (Nemertea). Mol Ecol Resour 10:274–281

    PubMed  CAS  Google Scholar 

  125. Daniels SR, Ruhberg H (2010) Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): evidence for cryptic speciation. J Zool 282:171–179

    Google Scholar 

  126. Trewick SA (2000) Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Mol Ecol 9:269–281

    PubMed  CAS  Google Scholar 

  127. Podsiadlowski L, Braband A, Mayer G (2008) The complete mitochondrial genome of the onychophoran Epiperipatus biolleyi reveals a unique transfer RNA set and provides further support for the ecdysozoa hypothesis. Mol Biol Evol 25:42–51

    PubMed  CAS  Google Scholar 

  128. Santagata S, Cohen BL (2009) Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zool J Linn Soc 157:34–50

    Google Scholar 

  129. Voigt O, Collins AG, Pearse VB et al (2004) Placozoa – no longer a phylum of one. Current Biol 14:944–945

    Google Scholar 

  130. Sanna D, Lai T, Francalacci P et al (2009) Population structure of the Monocelis lineata (Proseriata, Monocelididae) species complex assessed by phylogenetic analysis of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. Gen Mol Biol 32:864–867

    CAS  Google Scholar 

  131. Moszczynska A, Locke SA, McLaughlin JD et al (2009) Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9:75–82

    CAS  Google Scholar 

  132. Zarowiecki MZ, Huyse T, Littlewood DTJ (2007) Making the most of mitochondrial genomes–markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). Int J Parasitol 37:1401–1418

    PubMed  CAS  Google Scholar 

  133. Pöppe J, Sutcliffe P, Hooper JNA et al (2010) CO I barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS One 5:e9950

    PubMed  Google Scholar 

  134. Wang X, Lavrov DV (2008) Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. PLoS One 3:e2723

    PubMed  Google Scholar 

  135. Watanabe KI, Bessho Y, Kawasaki M, Hori H (1999) Mitochondrial genes are found on minicircle DNA molecules in the mesozoan animal Dicyema. J Mol Biol 286:645–650

    PubMed  CAS  Google Scholar 

  136. Derry AM, Hebert PDN, Prepas EE (2003) Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limn Oceanograph 48:675–685

    CAS  Google Scholar 

  137. Fontaneto D, Kaya M, Herniou EA, Barraclough TG (2009) Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phy Evol 53:182–189

    CAS  Google Scholar 

  138. Gómez A, Serra M, Carvalho GR, Lunt DH (2002) Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56:1431–1444

    PubMed  Google Scholar 

  139. Du X, Chen Z, Deng Y, Wang Q (2009) Comparative analysis of genetic diversity and population structure of Sipunculus nudus as revealed by mitochondrial COI sequences. Biochem Genet 47:884–891

    PubMed  CAS  Google Scholar 

  140. Kawauchi GY, Giribet G (2010) Are there true cosmopolitan sipunculan worms? A genetic variation study within Phascolosoma perlucens (Sipuncula, Phascolosomatidae). Marine Biol 157:1417–1431

    Google Scholar 

  141. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci 360:1935–1943

    PubMed  CAS  Google Scholar 

  142. Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecol 8:7

    PubMed  Google Scholar 

  143. Schill RO (2007) Comparison of different protocols for DNA preparation and PCR amplification of mitochondrial genes of tardigrades. J Limnol 66:164–170

    Google Scholar 

  144. Cesari M, Bertolani R, Rebecchi L, Guidetti R (2009) DNA barcoding in Tardigrada: the first case study on Macrobiotus macro-calix Bertolani & Rebecchi 1993 (Eutar-digrada, Macrobiotidae). Mol Ecol Resour 9:699–706

    PubMed  CAS  Google Scholar 

  145. Stefaniak L, Lambert G, Gittenberger A et al (2009) Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002. Aquat Invasion 4:29–44

    Google Scholar 

  146. Nydam ML, Harrison RG (2007) Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Marine Biol 151:1839–1847

    Google Scholar 

  147. Bourlat SJ, Nielsen C, Lockyer AE et al (2003) Xenoturbella is a deuterostome that eats molluscs. Nature 424:925–928

    PubMed  CAS  Google Scholar 

  148. Meyer CP (2003) Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biol J Linn Soc 79:401–459

    Google Scholar 

  149. Kojima S, Segawa R, Hashimoto J, Ohta S (1997) Molecular phylogeny of vestimentiferans collected around Japan, revealed by the nucleotide sequences of mitochondrial DNA. Marine Biol 127:507–513

    Google Scholar 

  150. Prendini L (2005) Systematics of the group of African whip spiders (Chelicerata: Amblypygi): Evidence from behaviour, morphology and DNA. Organ Div Evol 5:203–236

    Google Scholar 

  151. Schwendinger PJ, Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebr Syst 19:297–323

    Google Scholar 

  152. Fukami H, Budd AF, Levitan DR et al (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    PubMed  CAS  Google Scholar 

  153. Dawson MN (2005) Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. J Biog 32:515–533

    Google Scholar 

  154. Martínez DE, Iñiguez AR, Percell KM et al (2010) Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Mol Phyl Evol 57:403–410

    Google Scholar 

  155. Palumbi SR, Martin A, Romano S et al (2002) The simple fool’s guide to PCR, Version 2.0. Department of Zoology and Kewalo Marine Laboratory, Honolulu, HI

    Google Scholar 

  156. Apakupakul K, Siddall ME, Burreson EM (1999) Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Mol Phylogenet Evol 12:350–359

    PubMed  CAS  Google Scholar 

  157. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The Characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    PubMed  CAS  Google Scholar 

  158. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR Protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Paulay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Evans, N., Paulay, G. (2012). DNA Barcoding Methods for Invertebrates. In: Kress, W., Erickson, D. (eds) DNA Barcodes. Methods in Molecular Biology, vol 858. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-591-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-591-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-590-9

  • Online ISBN: 978-1-61779-591-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics