Skip to main content

Future Directions

  • Protocol
  • First Online:
DNA Barcodes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 858))

Abstract

It is a risky task to attempt to predict the direction that DNA barcoding and its applications may take in the future. In a very short time, the endeavor of DNA barcoding has gone from being a tool to facilitate taxonomy in difficult to identify species, to an ambitious, global initiative that seeks to tackle such pertinent and challenging issues as quantifying global biodiversity, revolutionizing the forensic identifications of species, advancing the study of interactions among species, and promoting the reconstruction of evolutionary relationships within communities. The core element of DNA barcoding will always remain the same: the generation of a set of well-identified samples collected and genotyped at one or more genetic barcode markers and assembled into a properly curated database. But the application of this body of data will depend on the creativity and need of the research community in using a “gold standard” of annotated DNA sequence data at the species level. We foresee several areas where the application of DNA barcode data is likely to yield important evolutionary, ecological, and societal insights, and while far from exclusive, provide examples of how DNA barcode data will continue to empower scientists to address hypothesis-driven research. Three areas of immediate and obvious concern are (1) biodiversity inventories, (2) phylogenetic applications, and (3) species interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert PDNH, Cywinska A, Ball S, deWaard J (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270: 313–321

    Article  CAS  Google Scholar 

  2. Vernooy R, Haribabu E, Muller MR et al (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biol 8:e1000417

    Article  PubMed  Google Scholar 

  3. Radulovici AE, Archambault P, Dufresne F (2010) DNA barcodes for marine biodiversity: moving fast forward? Diversity 2:450–472

    Article  CAS  Google Scholar 

  4. Dinca V, Zakharov EV, Hebert PD, Vila R (2010) Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc R Soc Lond B Biol Sci 278:347–355. doi:10.1098/rspb.2010.1089

    Article  Google Scholar 

  5. McLaughlin JF, Hellmann JL, Boggs CL, Ehrlich PL (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074. doi:10.1073/pnas.052131199

    Article  PubMed  CAS  Google Scholar 

  6. Ezard THG, Aze T, Pearson PN et al (2011) Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332:349–351

    Article  PubMed  CAS  Google Scholar 

  7. Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105:11823–11826

    Article  PubMed  CAS  Google Scholar 

  8. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? TREE 4:135–139

    Google Scholar 

  9. Simberloff D (2000) Global climate change and introduced species in United States forests. Sci Total Environ 262:253–261

    Article  PubMed  CAS  Google Scholar 

  10. Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 360: 1813–1823. doi:10.1098/rstb.2005.171

    Article  PubMed  CAS  Google Scholar 

  11. Dawnay N, Ogden R, McEwing R et al (2007) Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci Int 173:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Pfrender ME, Hawkins CP, Bagley M et al (2010) Assessing macroinvertebrate biodiversity in freshwater ecosystems: advances and challenges in DNA-based approaches. Q Rev Biol 85:319–340

    Article  PubMed  Google Scholar 

  13. Stribling J (2006) Environmental protection using DNA barcodes or taxa? Bioscience 56:878–879

    Article  Google Scholar 

  14. Pilgrim EM, Jackson SA, Swenson S et al (2011) Incorporation of DNA barcoding into a large-scale biomonitoring program: opportunities and pitfalls. J N Am Benthol Soc 30:217–231

    Article  Google Scholar 

  15. Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc R Soc Lond B Biol Sci 273:2053–2061

    Article  CAS  Google Scholar 

  16. Kesanakurti PR, Fazekas AJ, Burgess KS (2011) Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. Mol Ecol 20:1289–1302

    Article  PubMed  Google Scholar 

  17. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  PubMed  CAS  Google Scholar 

  18. Soininen EM, Valentini A, Coissac E et al (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 6:16. doi:10.1186/1742-9994-6-16

    Article  PubMed  Google Scholar 

  19. Ficetola GF, Coissac E, Zundel S et al (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11:434

    Article  PubMed  Google Scholar 

  20. Janzen DH, Hajibabaei M, Burns JM et al (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Proc R Soc Lond B Biol Sci 360:1835–1845

    Article  CAS  Google Scholar 

  21. Hebert PDN, Penton EH, Burns JM et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  PubMed  CAS  Google Scholar 

  22. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1905–1916. doi:10.1098/rstb.2005.1722

    Article  PubMed  CAS  Google Scholar 

  23. Seberg O, Humphries CJ, Knapp S, Stevenson DW, Peterson G, Scharff N et al (2003) Shortcuts in systematics? A commentary on DNA-based taxonomy. TREE 18:63–65

    Google Scholar 

  24. Miller SE (2007) DNA barcoding and the renaissance of taxonomy. Proc Natl Acad Sci USA 104:4775–4776. doi:10.1073/pnas.0700466104

    Article  PubMed  CAS  Google Scholar 

  25. Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325:682–683

    Article  PubMed  CAS  Google Scholar 

  26. Kress WJ, Erickson DL, Jones FA et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626

    Article  PubMed  CAS  Google Scholar 

  27. Schreeg LA, Erickson DL, Kress WJ, Swenson NG (2011) Phylogenetic analysis of local-scale tree soil associations in a lowland moist tropical forest. PLoS One 5:e13685. doi:10.1371/journal.pone.0013685

    Article  Google Scholar 

  28. Uriarte M, Swenson NG, Robin L, Chazdon RL et al (2011) Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecol Lett 13:1503–1514

    Article  Google Scholar 

  29. Pisani D, Wilkinson M (2002) Matrix representation with parsimony, taxonomic congruence, and total evidence. Syst Biol 51:151–155

    Article  PubMed  Google Scholar 

  30. Thompson JN (1999) The evolution of species interactions. Science 284:2116–2118. doi:10.1126/science.284.5423.2116

    Article  PubMed  CAS  Google Scholar 

  31. Novotny V et al (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  PubMed  CAS  Google Scholar 

  32. Novotny V, Drozd P, Miller SE et al (2007) Why are there so many species of herbivorous insects in tropical rainforests? Science 313: 1115–1118

    Article  Google Scholar 

  33. Norton DA, Didham RK (2007) Comment on “Why are there so many species of herbivorous insects in tropical rainforests?”. Science 315:1666b

    Article  Google Scholar 

  34. Leray M, Agudelo CN, Mills CM, Meyer CP (2011, submitted) Trophic interactions from COI fragment amplification of gut contents: methodological guidelines and case studies of two omnivorous reef fish species. PLoS ONE

    Google Scholar 

  35. Glenn TC (2011) Field guide to purchasing and using next-generation DNA sequencers. Mol Ecol Notes 11:759–769

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Erickson, D.L., Kress, W.J. (2012). Future Directions. In: Kress, W., Erickson, D. (eds) DNA Barcodes. Methods in Molecular Biology, vol 858. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-591-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-591-6_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-590-9

  • Online ISBN: 978-1-61779-591-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics