Skip to main content

Analysis of Gene Order Evolution Beyond Single-Copy Genes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 855))

Abstract

The purpose of this chapter is to provide a comprehensive review of the field of genome rearrangement, i.e., comparative genomics, based on the representation of genomes as ordered sequences of signed genes. We specifically focus on the “hard part” of genome rearrangement, how to handle duplicated genes. The main questions are: how have present-day genomes evolved from a common ancestor? What are the most realistic evolutionary scenarios explaining the observed gene orders? What was the content and structure of ancestral genomes? We aim to provide a concise but complete overview of the field, starting with the practical problem of finding an appropriate representation of a genome as a sequence of ordered genes or blocks, namely the problems of orthology, paralogy, and synteny block identification. We then consider three levels of gene organization: the gene family level (evolution by duplication, loss, and speciation), the cluster level (evolution by tandem duplications), and the genome level (all types of rearrangement events, including whole genome duplication).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Watterson, G., Ewens, W., Hall, T., and Morgan, A. (1982) The chromosome inversion problem. Journal of Theoretical Biology, 99, 1–7.

    Article  Google Scholar 

  2. Sankoff, D., G. Leduc, Antoine, N., Paquin, B., Lang, B., and Cedergren, R. (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences USA, 89, 6575–6579.

    Article  CAS  Google Scholar 

  3. Ohno, S. (1970) Evolution by gene duplication. Springer.

    Google Scholar 

  4. Sanderson, M. and McMahon, M. (2007) Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evolutionary Biology, 7, S3.

    Article  PubMed  Google Scholar 

  5. Wapinski, I., Pfeffer, A., Friedman, N., and Regev, A. (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature, 449, 54–61.

    Article  PubMed  CAS  Google Scholar 

  6. Hannenhalli, S. and Pevzner, P. A. (1995) Transforming men into mice (polynomial algorithm for genomic distance problem). Proceedings of the IEEE 36th Annual Symposium on Foundations of Computer Science, pp. 581–592.

    Google Scholar 

  7. Tesler, G. (2002) Efficient algorithms for multichromosomal genome rearrangements. Journal of Computer and System Sciences, 65, 587–609.

    Article  Google Scholar 

  8. Bergeron, A., Mixtacki, J., and Stoye, J. (2006) A unifying view of genome rearrangements. Algorithms in Bioinformatics. WABI ‘06, vol. 4175 of Lecture Notes in Computer Science, pp. 163–173.

    Google Scholar 

  9. Bergeron, A., Mixtacki, J., and Stoye, J. (2009) A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theoretical Computer Science, 410, 5300–5316.

    Article  Google Scholar 

  10. Yancopoulos, S., Attie, O., and Friedberg, R. (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 21, 3340–3346.

    Article  PubMed  CAS  Google Scholar 

  11. Angibaud, S., Fertin, G., Rusu, I., and Vialette, S. (2007) A general framework for computing rearrangement distances between genomes with duplicates. Journal of Computational Biology, 14, 379–393.

    Article  PubMed  CAS  Google Scholar 

  12. Blin, G., Chauve, C., Fertin, G., Rizzi, R., and Vialette, S. (2007) Comparing genomes with duplications: a computational complexity point of view. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 523–534.

    Article  PubMed  Google Scholar 

  13. Chauve, C., Fertin, G., Rizzi, R., and Vialette, S. (2006) Genomes containing duplicates are hard to compare. Computational Science (ICCS 2006), vol. 3992 of Lecture Notes in Computer Science, pp. 783–790.

    Google Scholar 

  14. Hannenhalli, S. (1995) Polynomial-time algorithm for computing translocation distance between genomes. Galil, Z. and Ukkonen, E. (eds.), Combinatorial Pattern Matching. 6th Annual Symposium, vol. 937 of Lecture Notes in Computer Science, pp. 162–176, Springer.

    Google Scholar 

  15. Hannenhalli, S. and Pevzner, P. A. (1999) Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). Journal of the ACM, 48, 1–27.

    Article  Google Scholar 

  16. Bader, D., Moret, B., and Yan, M. (2001) A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology, 8, 483–491.

    Article  PubMed  CAS  Google Scholar 

  17. Bergeron, A., Mixtacki, J., and Stoye, J. (2004) Reversal distance without hurdles and fortresses. Sahinalp, S., Muthukrishnan, S., and Dogrusoz, U. (eds.), Combinatorial Pattern Matching ‘04, vol. 3109 of Lecture Notes in Computer Science, pp. 388–399.

    Google Scholar 

  18. Bafna, V. and Pevzner, P. A. (1998) Sorting by transpositions. SIAM Journal on Discrete Mathematics, 11, 224–240.

    Article  Google Scholar 

  19. Hartman, T. (2003) A simpler 1.5-approximation algorithm for sorting by transpositions. R.Baeza-Yates, Chávez, E., and Crochemore, M. (eds.), Combinatorial Pattern Matching. 14th Annual Symposium., vol. 2676 of Lecture Notes in Computer Science, pp. 156–169.

    Google Scholar 

  20. Meidanis, J., Walter, M. E., and Dias, Z. (1997) Transposition distance between a permutation and its reverse. Baeza-Yates, R. (ed.), Proceedings of the Fourth South American Workshop on String Processing (WSP’97), pp. 70–79, Carleton University Press.

    Google Scholar 

  21. Walter, M. E., Dias, Z., and Meidanis, J. (1998) Reversal and transposition distance of linear chromosomes. Proceedings of String Processing and Information Retrieval: A South American Symposium (SPIRE’98), pp. 96–102.

    Google Scholar 

  22. Bergeron, A., Chauve, C., and Gingras, Y. (2008) Formal models of gene clusters. Mandoiu, I. and Zelikovsky, A. (eds.), Bioinformatics algorithms: techniques and applications, chap. 8, Wiley.

    Google Scholar 

  23. Bourque, G., Yacef, Y., and El-Mabrouk, N. (2005) Maximizing synteny blocks to identify ancestral homologs. Lecture Notes in Bioinformatics, vol. 3678 of RECOMB-CG, pp. 21–34, Springer.

    Google Scholar 

  24. Tatusov, R., Galperin, M., Natale, D., and Koonin, E. (2000) The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 28, 33–36.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, F., Mackey, A., C.J. Stoeckert, J., and Roos, D. S. (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research, 34, D363–D368.

    Google Scholar 

  26. O’Brien, K., Remm, M., and Sonnhammer, E. (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Research, 33, D476–D480.

    Article  PubMed  Google Scholar 

  27. Lyons, E. and Freeling, M. (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. The Plant Journal, 53, 661–673.

    Article  PubMed  CAS  Google Scholar 

  28. Murat, F., Xu, J., Tannier, E., Abrouk, M., Guilhot, N., Pont, C., Messing, J., and Salse, J. (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Research, 20(11), 1545–1557.

    Google Scholar 

  29. Sankoff, D. (1999) Genome rearrangements with gene families. Bioinformatics, 15, 909–917.

    Article  PubMed  CAS  Google Scholar 

  30. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., and Jiang, T. (2007) MSOAR: A high-throughput ortholog assignment system based on genome rearrangement. Journal of Computational Biology, 14, 1160–1175.

    Article  PubMed  CAS  Google Scholar 

  31. Jiang, T. (2010) Some algorithmic challenges in genome-wide ortholog assignment. Journal of Computer Science and Technology, 25.

    Google Scholar 

  32. Shi, G. and Jiang, T. (2010) MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement. BMC Bioinformatics, 11, 1160–1175.

    Google Scholar 

  33. Yancopoulos, S. and Friedberg, R. (2009) DCJ path formulation for genome transformations which include insertions, deletions, and duplications. Journal of Computational Biology, 16, 1311–1338.

    Article  PubMed  CAS  Google Scholar 

  34. Nadeau, J. and Taylor, B. (1984) Lengths of chromosomal segments conserved since divegence of man and mouse. Proceedings of the National Academy of Sciences USA, 81, 814–818.

    Article  CAS  Google Scholar 

  35. Sankoff, D., Parent, M., and Bryant, D. (2000) Accuracy and robustness of analyses based on numbers of genes in observed segments. Sankoff, D. and Nadeau, J. H. (eds.), Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and Evolution of Gene Families, pp. 299–306, Kluwer Academic.

    Google Scholar 

  36. Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W., and Haussler, D. (2003) Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences of the United States of America, 100, 11484–11489.

    Article  PubMed  CAS  Google Scholar 

  37. Pevzner, P. and Tesler, G. (2003) Genome rearrangements in mammalian evolution: Lessons from human and mouse genomic sequences. Genome Research, 13, 13–26.

    Article  Google Scholar 

  38. Peng, Q., Alekseyev, M., Tesler, G., and Pevzner, P. (2009) Decoding synteny blocks and large-scale duplications in mammalian and plant genomes. Salzberg, S. and Warnow, T. (eds.), Algorithms in Bioinformatics, vol. 5724 of Lecture Notes in Computer Science, pp. 220–232.

    Google Scholar 

  39. Pham, S. and Pevzner, P. (2010) Drimm-synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics, 26, 2509–2516.

    Article  PubMed  CAS  Google Scholar 

  40. Durand, D. and Sankoff, D. (2003) Testing for gene clusters. Journal of Computational Biology, 10, 453–482.

    Article  PubMed  CAS  Google Scholar 

  41. Hoberman, R. and Durand, D. (2005) The incompatible desiderata of gene cluster properties. McLysaght, A. and Huson, D. (eds.), Comparative Genomics, vol. 3678 of Lecture Notes in Computer Science, pp. 73–87, Springer Berlin/Heidelberg.

    Google Scholar 

  42. Uno, T. and Yagiura, M. (2000) Fast algorithms to enumerate all common intervals of two permutations. Algorithmica, 26, 290–309.

    Article  Google Scholar 

  43. Bergeron, A. and Stoye, J. (2003) On the similarity of sets of permutations and its applications to genome comparison. Journal of Computational Biology, 13, 1340–1354.

    Article  Google Scholar 

  44. Heber, S. and Stoye, J. (2001) Finding all common intervals of k permutations. Amir, A. and Landau, G. M. (eds.), Combinatorial Pattern Matching. 12th Annual Symposium, vol. 2089 of Lecture Notes in Computer Science, pp. 207–218, Springer.

    Google Scholar 

  45. Landau, G., Parida, L., and Weimann, O. (2005) Gene proximity analysis across whole genomes via PQ trees. Journal of Computational Biology, 12, 1289–1306.

    Article  PubMed  CAS  Google Scholar 

  46. Bergeron, A., Corteel, S., and Raffinot, M. (2002) The algorithmic of gene teams. Guigó, R. and Gusfield, D. (eds.), Algorithms in Bioinformatics. Proceedings of WABI 2002, vol. 2452 of Lecture Notes in Computer Science, pp. 464–476, Springer.

    Google Scholar 

  47. Hoberman, R., Sankoff, D., and Durand, D. (2005) The statistical analysis of spatially clustered genes under the maximum gap criterion. Journal of Computational Biology, 12, 1083–1102.

    Article  PubMed  CAS  Google Scholar 

  48. Yang, Z. and Sankoff, D. (2010) Natural parameter values for generalized gene adjacency. Journal of Computational Biology, 17, 1113–1128.

    Article  PubMed  Google Scholar 

  49. Zhu, Q., Adam, Z., Choi, V., and Sankoff, D. (2009) Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 6, 213–220.

    Article  Google Scholar 

  50. Xu, X. and Sankoff, D. (2008) Tests for gene clusters satisfying the generalized adjacency criterion. Bazzan, A., Craven, M., and Martins, N. (eds.), Advances in Bioinformatics and Computational Biology, vol. 5167 of Lecture Notes in Computer Science, pp. 152–160, Springer Berlin/Heidelberg.

    Google Scholar 

  51. Li, W., Gu, Z., Wang, H., and Nekrutenko, A. (2001) Evolutionary analysis of the human genome. Nature, 409, 847–849.

    Article  PubMed  CAS  Google Scholar 

  52. Wolfe, K. (2001) Yesterday’s polyploids and the mystery of diploidization. Nature Reviews Genetics, 2, 333–341.

    Article  PubMed  CAS  Google Scholar 

  53. Blomme, T., Vandepoele, K., Bodt, S. D., Silmillion, C., Maere, S., and van de Peer, Y. (2006) The gain and loss of genes during 600 millions years of vertebrate evolution. Genome Biology, 7, R43.

    Article  PubMed  Google Scholar 

  54. Cotton, J. and Page, R. (2005) Rates and patterns of gene duplication and loss in the human genome. Proceedings of the Royal Society of London. Series B, 272, 277–283.

    Article  PubMed  CAS  Google Scholar 

  55. Eichler, E. and Sankoff, D. (2003) Structural dynamics of eukaryotic chromosome evolution. Science, 301, 793–797.

    Article  PubMed  CAS  Google Scholar 

  56. Hahn, M., Han, M., and Han, S.-G. (2007) Gene family evolution across 12 drosophilia genomes. PLoS Genetics, 3:e197.

    Article  PubMed  Google Scholar 

  57. Lynch, M. and Conery, J. (2000) The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  58. Gascuel, O., Bertrand, D., and Elemento, O. (2005) Reconstructing the duplication history of tandemly repeated sequences. Gascuel, O. (ed.), Mathematics of Evolution and Phylogeny, pp. 205–235, Oxford.

    Google Scholar 

  59. El-Mabrouk, N. and Sankoff, D. (2003) The reconstruction of doubled genomes. SIAM Journal on Computing, 32, 754–792.

    Article  Google Scholar 

  60. Sankoff, D. (2001) Gene and genome duplication. Current Opinion in Genetics & Development, 11, 681–684.

    Article  CAS  Google Scholar 

  61. Demuth, J., Bie, T. D., Stajich, J., Cristianini, N., and Hahn, M. (2006) The evolution of mammalian gene families. PLoS ONE, 1:e85.

    Article  PubMed  Google Scholar 

  62. Chen, K., Durand, D., and Farach-Colton, M. (2000) Notung: Dating gene duplications using gene family trees. Journal of Computational Biology, 7, 429–447.

    Article  PubMed  CAS  Google Scholar 

  63. Vernot, B., Stolzer, M., Goldman, A., and Durand, D. (2008) Reconciliation with non-binary species trees. Journal of Computational Biology, 15, 981–1006.

    Article  PubMed  CAS  Google Scholar 

  64. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., and Matsuda, G. (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology, 28, 132–163.

    Article  CAS  Google Scholar 

  65. Hallett, M. T. and Lagergren, J. (2001) Efficient algorithms for lateral gene transfer problems. Proceedings of the Fifth Annual International Conference on Computational Biology (RECOMB’01), New York, pp. 149–156, ACM.

    Google Scholar 

  66. Chauve, C., Doyon, J.-P., and El-Mabrouk., N. (2008) Gene family evolution by duplication, speciation and loss. J. Comput. Biol., 15, 1043–1062.

    Google Scholar 

  67. Chauve, C. and El-Mabrouk, N. (2009) New perspectives on gene family evolution: losses in reconciliation and a link with supertrees. Batzoglou, S. (ed.), Research in Molecular Biology (RECOMB 2009), vol. 5541 of Lecture Notes in Computer Science, pp. 46–58, Springer.

    Google Scholar 

  68. Gorecki, P. and Tiuryn., J. (2006) DLS-trees: a model of evolutionary scenarios. Theoretical Computer Science, 359, 378–399.

    Article  Google Scholar 

  69. Arvestad, L., Berglung, A.-C., Lagergren, J., and Sennblad, B. (2004) Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. Gusfield, D. (ed.), RECOMB ‘04: Proceedings of the Eighth Annual International Conference on Research in Computational Molecular Biology, New York, pp. 326–335, ACM.

    Google Scholar 

  70. Ma, B., Li, M., and Zhang, L. (2000) From gene trees to species trees. SIAM Journal on Computing, 30, 729–752.

    Article  Google Scholar 

  71. Page, R. (1994) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology, 43, 58–77.

    Google Scholar 

  72. Guigó, R., Muchnik, I., and Smith, T. (1996) Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution, 6, 189–213.

    Article  PubMed  Google Scholar 

  73. Page, R. and Charleston, M. (1997) Reconciled trees and incongruent gene and species trees. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 37, 57–70.

    Google Scholar 

  74. Bonizzoni, P., Della Vedova, G., and Dondi, R. (2005) Reconciling a gene tree to a species tree under the duplication cost model. Theoretical Computer Science, 347, 36–53.

    Article  Google Scholar 

  75. Durand, D., Haldórsson, B., and Vernot, B. (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. Journal of Computational Biology, 13, 320–335.

    Article  PubMed  CAS  Google Scholar 

  76. Eulenstein, O., Mirkin, B., and Vingron, M. (1998) Duplication-based measures of difference between gene and species trees. Journal of Computational Biology, 5, 135–148.

    Article  PubMed  CAS  Google Scholar 

  77. Page., R. (1998) Genetree: comparing gene and species phylogenies using reconciled trees. Bioinformatics, 14, 819–820.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang, L. (1997) On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology, 4, 177–188.

    Article  PubMed  CAS  Google Scholar 

  79. Doyon, J.-P., Chauve, C., and Hamel., S. (2009) The space of gene tree/species tree reconciliations and parsimonious models. Journal of Computational Biology, 16, 1399–1418.

    Article  PubMed  CAS  Google Scholar 

  80. Page, R. and Cotton, J. (2002) Vertebrate phylogenomics: reconciled trees and gene duplications. Pacific Symposium on Biocomputing, pp. 536–547.

    Google Scholar 

  81. Zmasek, C. M. and Eddy, S. R. (2001) A simple algorithm to infer gene duplication and speciiation events on a gene tree. Bioinformatics, 17, 821–828.

    Article  PubMed  CAS  Google Scholar 

  82. Hallett, M. and Lagergren, J. (2000) New algorithms for the duplication-loss model. Shamir, R., Miyano, S., Istrail, S., Pevzner, P., and Waterman, M. S. (eds.), Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, New York, pp. 138–146, RECOMB, ACM.

    Google Scholar 

  83. Hahn, M. (2007) Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology, 8.

    Google Scholar 

  84. Chang, W. and Eulenstein, O. (2006) Reconciling gene trees with apparent polytomies. Chen, D. and Lee, D. T. (eds.), Proceedings of the 12th Conference on Computing and Combinatorics (COCOON), vol. 4112 of Lecture Notes in Computer Science, pp. 235–244.

    Google Scholar 

  85. Doroftei, A. and El-Mabrouk, N. (2011) Removing noice from gene trees. Algorithms in Bioinformatics, vol. 6833 of Lecture Notes in Computer Science, pp. 76–91.

    Google Scholar 

  86. Shoja, V. and Zhang, L. (2006) A roadmap of tandemly arrayed genes in the genomes of human, mouse, and rat. Molecular Biology and Evolution, 23, 2134–2141.

    Article  PubMed  CAS  Google Scholar 

  87. Glusman, G., Yanai, I., Rubin, I., and Lancet, D. (2001) The complete human olfactory subgenome. Genome Research, 11, 685–702.

    Article  PubMed  CAS  Google Scholar 

  88. LaRue, R., Jonsson, S., Silverstein, K., Lajoie, M., Bertrand, D., El-Mabrouk, N., Hötzel, I., Andresdottir, V., Smith, T., and Harris, R. (2008) The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Molecular Biology, 9, 104.

    Article  PubMed  Google Scholar 

  89. Arden, B., Clark, S., Kabelitz, D., and Mak, T. (1995) Human T-cell receptor variable gene segment families. Immunogenetics, 42, 455–500.

    PubMed  CAS  Google Scholar 

  90. Shannon, M., Hamilton, A., Gordon, L., Branscomb, E., and Stubbs, L. (2003) Differential expansion of zinc finger transcription factor loci in homologous human and mouse gene clusters. Genome Research, 13, 1097–1110.

    Article  PubMed  CAS  Google Scholar 

  91. Song, G., Zhang, L., Vinar, T., and Miller, W. (2009) Inferring the recent duplication history of a gene cluster. Ciccarelli, F. and Miklós, I. (eds.), Comparative Genomics, vol. 5817 of Lecture Notes in Computer Science, Springer.

    Google Scholar 

  92. Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D., and Miller, W. (2003) Human-mouse alignments with blastz. Genome Research, 13, 103–107.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang, Y., Song, G., Hsu, C., and Miller, W. (2009) Simultaneous history reconstruction for complex gene clusters in multiple species. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 162–173.

    Google Scholar 

  94. Zhang, Y., Song, G., Vinar, T., Green, E., Siepel, A., and Miller, W. (2008) Reconstructing the evolutionary history of complex human gene clusters. M. Vingron and L. Wong (eds.), Research in Computational Molecular Biology. (RECOMB 2008), vol. 4955 of Lecture Notes in Computer Science, pp. 29–49, Springer.

    Google Scholar 

  95. Vinař, T., Brejová, B., Song, G., and Siepel, A. (2010) Reconstructing histories of complex gene clusters on a phylogeny. Journal of Computational Biology, 17, 1267–1269.

    Article  PubMed  Google Scholar 

  96. Fitch, W. (1977) Phylogenies constrained by cross-over process as illustrated by human hemoglobins and a thirteen-cycle, eleven amino-acid repeat in human apolipoprotein A-I. Genetics, 86, 623–644.

    PubMed  CAS  Google Scholar 

  97. Bertrand, D. and Gascuel, O. (2005) Topological rearrangements and local search method for tandem duplication trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2, 15–28.

    Article  PubMed  CAS  Google Scholar 

  98. Elemento, O., Gascuel, O., and Lefranc, M.-P. (2002) Reconstructing the duplication history of tandemly repeated genes. Molecular Biology and Evolution, 19, 278–288.

    Article  PubMed  CAS  Google Scholar 

  99. Tang, M., Waterman, M., and Yooseph, S. (2001) Zinc finger gene clusters and tandem gene duplication. Research in Molecular Biology (RECOMB 2001), pp. 297–304.

    Google Scholar 

  100. Zhang, L., Ma, B., Wang, L., and Xu, Y. (2003) Greedy method for inferring tandem duplication history. Bioinformatics, 19, 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  101. Chaudhuri, K., Chen, K., Mihaescu, R., and Rao, S. (2006) On the tandem duplication-random loss model of genome rearrangement. SODA.

    Google Scholar 

  102. Lajoie, M., Bertrand, D., El-Mabrouk, N., and Gascuel, O. (2007) Duplication and inversion history of a tandemly repeated genes family. Journal of Computational Biology, 14, 462–478.

    Article  PubMed  CAS  Google Scholar 

  103. Bertrand, D., Lajoie, M., and El-Mabrouk, N. (2008) Inferring ancestral gene orders for a family of tandemly arrayed genes. Journal of Computational Biology, 15, 1063–1077.

    Article  PubMed  CAS  Google Scholar 

  104. Lajoie, M., Bertrand, D., and El-Mabrouk, N. (2009) Inferring the evolutionary history of gene clusters from phylogenetic and gene order data. Molecular Biology and Evolution, 27, 761–772.

    Article  PubMed  Google Scholar 

  105. Sankoff, D. and Blanchette, M. (1997) The median problem for break-points in comparative genomics. Jiang, T. and Lee, D. (eds.), Computing and Combinatorics, Proceeedings of COCOON ‘97, Berlin, pp. 251–263, no. 1276 in Lecture Notes in Computer Science, Springer.

    Google Scholar 

  106. Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L.-S., Warnow, T., and Wyman, S. (2000) An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. D.Sankoff and Nadeau, J. (eds.), Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 99–121, Kluwer Academic Publishers.

    Google Scholar 

  107. HPCwire (2000) Grappa runs in a record time. 9, 47.

    Google Scholar 

  108. Siepel, A. (2001) Exact Algorithms for the Reversal Median Problem.. Master’s thesis, University of New Mexico.

    Google Scholar 

  109. Caprara, A. (2001) On the practical solution of the reversal median problem. Gascuel, O. and Moret, B. (eds.), Algorithms in Bioinformatics (WABI). First International Workshop, vol. 2149 of Lecture Notes in Computer Science, pp. 238–251, Springer.

    Google Scholar 

  110. Bourque, G. and Pevzner, P. (2002) Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research, 12, 26–36.

    PubMed  CAS  Google Scholar 

  111. Moret, B., Wang, L., Warnow, T., and Wyman, S. (2001) New approaches for reconstructing phylogenies from gene order data. Bioinformatics, 17, S165–S173.

    Article  PubMed  Google Scholar 

  112. Tannier, E., Zheng, C., and Sankoff, D. (2009) Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics, 10.

    Google Scholar 

  113. Adam, Z. and Sankoff, D. (2010) A statistically fair comparison of ancestral genome reconstructions, based on breakpoint and rearrangement distances. Journal of Computational Biology, 17, 1299–1314.

    Article  PubMed  CAS  Google Scholar 

  114. Xu, A. (2009) A fast and exact algorithm for the median of three problem: a graph decomposition approach. Journal of Computational Biology, 16, 1369–1381.

    Article  PubMed  CAS  Google Scholar 

  115. Zheng, C. (2010) Pathgroups, a dynamic data structure for genome reconstruction problems. Bioinformatics, 26, 1587–1594.

    Article  PubMed  CAS  Google Scholar 

  116. Zheng, C. and Sankoff, D. (2011) On the Pathgroups approach to rapid small phylogeny. BMC Bioinformatics, 12, S4.

    PubMed  Google Scholar 

  117. Sankoff, D. and Blanchette, M. (1998) Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 5, 555–570.

    Article  PubMed  CAS  Google Scholar 

  118. Chauve, C., Gavranovic, H., Ouangraoua, A., and Tannier, E. (2008) Yeast ancestral genome reconstructions: the possibilities of computational methods. PloS Computational Biology, 4, e1000234.

    Article  PubMed  Google Scholar 

  119. Murat, F., Xu, J.H., Tannier, E., Abrouk, M., Guilhot, N., Pont, C., Messing, J., and Salse, J. (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Research, 20(11):1545–1557.

    Article  PubMed  CAS  Google Scholar 

  120. Gavranovic, H., Chauve, C., Salse, J., and Tannier, E. (2011) Mapping ancestral genomes with massive gene loss: A matrix sandwich problem. Bioinformatics, 27:i257–i265.

    Article  PubMed  CAS  Google Scholar 

  121. Muffato, M., Louis, A., Poisnel, C.E. and Crollius, R. (2011) Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics, 26(8):1119–1121.

    Article  Google Scholar 

  122. Fulkerson, D. and Gross, O. (1965) Incidence matricesand interval graphs. Pac. J. Math., 15, 835–855.

    Article  Google Scholar 

  123. Blanc, G., Hokamp, K., and Wolfe, K. (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Research, 13, 137–144.

    Article  PubMed  CAS  Google Scholar 

  124. Bowers, J., Chapman, B., Rong, J., and Paterson, A. (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422, 433–438.

    Article  PubMed  CAS  Google Scholar 

  125. Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U., Calcagno, T., Cooke, R., Delseny, M., and Feuillet, C. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. The Plant Cell, 20, 11–24.

    Article  PubMed  CAS  Google Scholar 

  126. Soltis, D., Albert, V., Leebens-Mack, J., Bell, C., Paterson, A., Zheng, C., Sankoff, D., dePamphilis, C., Wall, P., and Soltis, P. (2009) Polyploidy and angiosperm diversification. American Journal of Botany, 96, 336–348.

    Article  PubMed  Google Scholar 

  127. Zheng, C., Zhu, Q., and Sankoff, D. (2008) Descendants of whole genome duplication within gene order phylogeny. Journal of Computational Biology, 15, 947–964.

    Article  PubMed  CAS  Google Scholar 

  128. Alekseyev, M. and Pevzner, P. (2007) Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 98–107.

    Article  PubMed  Google Scholar 

  129. Mixtacki, J. (2008) Genome halving under DCJ revisited. Hu, X. and Wang, J. (eds.), Computing and Combinatorics (COCOON). Seventeenth Annual Conference, vol. 5092 of Lecture Notes in Computer Science, pp. 276–286, Springer.

    Google Scholar 

  130. Warren, R. and Sankoff, D. (2009) Genome halving with double cut and join. Journal of Bioinformatics and Computational Biology, 7, 357–371.

    Article  PubMed  CAS  Google Scholar 

  131. Gagnon, Y., Tremblay-Savard, O., Bertrand, D., and El-Mabrouk, N. (2010) Advances on genome duplication distances. Tannier, E. (ed.), Comparative Genomics (RECOMB CG ‘10), vol. 6398 of Lecture Notes in Computer Science, pp. 25–38.

    Google Scholar 

  132. Sankoff, D., Zheng, C., Wall, P., dePamphilis, C., Leebens-Mack, J., and Albert, V. (2009) Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. Journal of Computational Biology, 16, 1353–67.

    Article  PubMed  CAS  Google Scholar 

  133. Gavranović, H. and Tannier, E. (2010) Guided genome halving: probably optimal solutions provide good insights into the preduplication ancestral genome of Saccharomyces cerevisiae. Pacific Symposium on Biocomputing, vol. 15, pp. 21–30.

    Google Scholar 

  134. Zheng, C., Zhu, Q., Adam, Z., and Sankoff, D. (2008) Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes. Bioinformatics, 24, i96–i104.

    Article  PubMed  CAS  Google Scholar 

  135. Gordon, J., Byrne, K., and Wolfe, K. (2009) Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PloS Genetics, 5, e1000485.

    Article  PubMed  Google Scholar 

  136. Warren, R. and Sankoff, D. (2010) Genome aliquoting revisited. Tannier, E. (ed.), Comparative Genomics (RECOMB CG). Eighth Annual Workshop, vol. 6398 of Lecture Notes in Computer Science, pp. 1–12, Springer.

    Google Scholar 

  137. Fertin, G., Labarre, A., Rusu, I., Tannier, E., and Vialette, S. (2009) Combinatorics of genome rearrangements. The MIT Press.

    Google Scholar 

  138. Tremblay-Savard, O., Bertrand, D., and El-Mabrouk, N. (2011) Evolution of orthologous tandemly arrayed gene clusters. BMC Bioinformatics, 12(Suppl 9), S2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sankoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

El-Mabrouk, N., Sankoff, D. (2012). Analysis of Gene Order Evolution Beyond Single-Copy Genes. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 855. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-582-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-582-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-581-7

  • Online ISBN: 978-1-61779-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics