Skip to main content

Proteomic Profiling of the Epithelial-Mesenchymal Transition Using 2D DIGE

  • Protocol
  • First Online:
Book cover Difference Gel Electrophoresis (DIGE)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 854))

Abstract

Metastasis remains the primary cause of cancer patient death. Although the precise molecular mechanisms at play remain largely unknown, tumor progression is currently hypothesized to follow a series of sequential steps known as the metastatic cascade. An important component, thought to be involved early in this cascade, is the process known as epithelial-mesenchymal transition (EMT), whereby epithelial cells undergo morphogenetic alterations and acquire properties typical of mesenchymal cells. EMT confers a metastatic advantage to the cancer cells through the loss of cell-cell adhesion, enhanced proteolytic activity, and increased cell migration and invasiveness. This chapter describes the experimental workflow for the secretome analysis of MDCK cells undergoing oncogenic Ras, and Ras/TGF-β-mediated EMT. To enable this comparison, serum-free cell culture conditions were optimized, and a secretome purification methodology established. Secretome samples were then subjected to DIGE analysis to reveal and quantify proteins that are differentially expressed during EMT. The proteomic strategy detailed within successfully identified several EMT modulators and broadens our understanding of the extracellular facets of the EMT process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DE:

Two-dimensional gel electrophoresis

APS:

Ammonium persulfate

BVA:

Biological variation analysis

CM:

Conditioned medium

DIA:

Differential in-gel analysis

DIGE:

Two-dimensional fluorescence difference gel electrophoresis

DMEM:

Dulbecco’s Modified Eagle Medium

DMF:

Dimethylformamide

DTT:

Dithiothreitol

EDA:

Extended data analysis

EMT:

Epithelial-mesenchymal transition

FCS:

Fetal calf serum

LC:

Liquid chromatography

MDCK:

Madin Darby canine kidney

MS:

Mass spectrometry

RT:

Room temperature

References

  1. Weigelt B, Peterse JL, and van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  PubMed  CAS  Google Scholar 

  2. Chen EI, and Yates JR, 3rd (2007) Cancer proteomics by quantitative shotgun proteomics. Mol Oncol 1:144–159

    Article  PubMed  Google Scholar 

  3. Chambers AF, Groom AC, and MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  4. Woodhouse EC, Chuaqui RF, and Liotta LA (1997) General mechanisms of metastasis. Cancer 80:1529–1537

    Article  PubMed  CAS  Google Scholar 

  5. Eccles SA, and Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  PubMed  CAS  Google Scholar 

  6. Gupta GP, and Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  7. Christofori G (2006) New signals from the invasive front. Nature 441:444–450

    Article  PubMed  CAS  Google Scholar 

  8. Geiger TR, and Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293–308

    PubMed  CAS  Google Scholar 

  9. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nature Reviews: Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  10. Bonnomet A, Brysse A, Tachsidis A, Waltham M et al (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15:261–273

    Article  PubMed  Google Scholar 

  11. Berx G, Raspe E, Christofori G, Thiery JP et al (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 24:587–597

    Article  PubMed  CAS  Google Scholar 

  12. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8–20

    Article  CAS  Google Scholar 

  13. Thiery JP, and Chopin D (1999) Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev 18:31–42

    Article  PubMed  CAS  Google Scholar 

  14. Perl AK, Wilgenbus P, Dahl U, Semb H et al (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392:190–193

    Article  PubMed  CAS  Google Scholar 

  15. Mathias RA, Chen YS, Wang B, Ji H et al (2010) Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration. J Proteome Res 9:1007–1019

    Article  PubMed  CAS  Google Scholar 

  16. Sabbah M, Emami S, Redeuilh G, Julien S et al (2008) Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updates 11:123–151

    Article  CAS  Google Scholar 

  17. Chen YS, Mathias RA, Mathivanan S, Kapp EA et al (2010) Proteomic profiling of MDCK plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-{beta}-mediated epithelial-mesenchymal transition. Mol Cell Proteomics

    Google Scholar 

  18. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A et al (2008) The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544

    Article  PubMed  CAS  Google Scholar 

  19. Vandewalle C, Comijn J, De Craene B, Vermassen P et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33:6566–6578

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X, Wei D, Yap Y, Li L et al (2007) Mass spectrometry-based “omics” technologies in cancer diagnostics. Mass Spectrom Rev 26:403–431

    Article  PubMed  CAS  Google Scholar 

  21. Walther TC, and Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  PubMed  CAS  Google Scholar 

  22. Jechlinger M, Grunert S, Tamir IH, Janda E et al (2003) Expression profiling of epithelial plasticity in tumor progression. Oncogene 22:7155–7169

    Article  PubMed  CAS  Google Scholar 

  23. Yang J, Mani SA, Donaher JL, Ramaswamy S et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  24. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  25. Gregory PA, Bracken CP, Bert AG, and Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    Article  PubMed  CAS  Google Scholar 

  26. Mathias RA, and Simpson RJ (2009) Towards understanding epithelial-mesenchymal transition: a proteomics perspective. Biochim Biophys Acta 1794:1325–1331

    PubMed  CAS  Google Scholar 

  27. Wei J, Xu G, Wu M, Zhang Y et al (2008) Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 28:327–334

    PubMed  CAS  Google Scholar 

  28. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014

    Article  PubMed  CAS  Google Scholar 

  29. Wu L, and Han DK (2006) Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics 3:611–619

    Article  PubMed  CAS  Google Scholar 

  30. Alban A, David SO, Bjorkesten L, Andersson C et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  PubMed  CAS  Google Scholar 

  31. Unlu M, Morgan ME, and Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  32. Timms JF, and Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  PubMed  CAS  Google Scholar 

  33. Friedman DB, and Lilley KS (2008) Optimizing the difference gel electrophoresis (DIGE) technology. Methods Mol Biol 428:93–124

    Article  PubMed  CAS  Google Scholar 

  34. Minden J (2007) Comparative proteomics and difference gel electrophoresis. BioTechniques 43:739, 741, 743 passim

    Google Scholar 

  35. Van den Bergh G, and Arckens L (2004) Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 15:38–43

    Article  PubMed  Google Scholar 

  36. Mathias RA, Wang B, Ji H, Kapp EA et al (2009) Secretome-Based Proteomic Profiling of Ras-Transformed MDCK Cells Reveals Extra­cellular Modulators of Epithelial-Mesenchymal Transition. J Proteome Res 8:2827–2837

    Article  PubMed  CAS  Google Scholar 

  37. Simpson RJ, Connolly LM, Eddes JS, Pereira JJ et al (2000) Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21:1707–1732

    Article  PubMed  CAS  Google Scholar 

  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  39. Phillips HJ, and Terryberry JE (1957) Counting actively metabolizing tissue cultured cells. Exp Cell Res 13:341–347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Health & Medical Research Council of Australia (program grant #487922 (R.J.S)), and funds from the Operational Infrastructure Support Program provided by the Victorian Government of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mathias, R.A., Ji, H., Simpson, R.J. (2012). Proteomic Profiling of the Epithelial-Mesenchymal Transition Using 2D DIGE. In: Cramer, R., Westermeier, R. (eds) Difference Gel Electrophoresis (DIGE). Methods in Molecular Biology, vol 854. Humana Press. https://doi.org/10.1007/978-1-61779-573-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-573-2_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-572-5

  • Online ISBN: 978-1-61779-573-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics