Skip to main content

The Induction of Mycotoxins by Trichothecene Producing Fusarium Species

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

In recent years, many Fusarium species have emerged which now threaten the productivity and safety of small grain cereal crops worldwide. During floral infection and post-harvest on stored grains the Fusarium hyphae produce various types of harmful mycotoxins which subsequently contaminate food and feed products. This article focuses specifically on the induction and production of the type B sesquiterpenoid trichothecene mycotoxins. Methods are described which permit in liquid culture the small or large scale production and detection of deoxynivalenol (DON) and its various acetylated derivatives. A wheat (Triticum aestivum L.) ear inoculation assay is also explained which allows the direct comparison of mycotoxin production by species, chemotypes and strains with different growth rates and/or disease-causing abilities. Each of these methods is robust and can be used for either detailed time-course studies or end-point analyses. Various analytical methods are available to quantify the levels of DON, 3A-DON and 15A-DON. Some criteria to be considered when making selections between the different analytical methods available are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Agrios, G. N. (2005) Plant Pathology, Academic Press, Inc., London.

    Google Scholar 

  2. Cuzick, A., Urban, M., and Hammond-Kosack, K. (2008) Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytologist 177, 990–1000.

    Article  PubMed  Google Scholar 

  3. Mudge, A. M., Dill-Macky, R., Dong, Y., Gardiner, D. M., White, R. G., and Manners, J. M. (2006) A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiological and Molecular Plant Pathology 69, 73–85.

    Article  CAS  Google Scholar 

  4. Proctor, R. H., Hohn, T. M., and McCormick, S. P. (1997) Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology 143, 2583–2591.

    Article  PubMed  CAS  Google Scholar 

  5. Proctor, R. H., Hohn, T. M., McCormick, S. P., and Desjardins, A. E. (1995) Tri6 encodes an unusual zinc-finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Applied and Environmental Microbiology 61, 1923–1930.

    PubMed  CAS  Google Scholar 

  6. Gaffoor, I., Brown, D. W., Plattner, R., Proctor, R. H., Qi, W., and Trail, F. (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (Anamorph Fusarium graminearum). Eukaryot Cell 4, 1926–1933.

    Article  PubMed  CAS  Google Scholar 

  7. Gaffoor, I., and Trail, F. (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Applied and Environmental Microbiology 72, 1793–1799.

    Article  PubMed  CAS  Google Scholar 

  8. Leonard, K. J., and Bushnell, W. R. (2003) Fusarium head blight of wheat and barley, The American Phytopathological Society, Minnesota.

    Google Scholar 

  9. McMullen, M., Jones, R., and Gallenberg, D. (1997) Scab of wheat and barley: a re-emerging disease of devasting impact. Plant Disease 81, 1340–1348.

    Article  Google Scholar 

  10. Parry, D. W., Jenkinson, P., and McLeod, L. (1995) Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology 44, 207–238.

    Article  Google Scholar 

  11. Wu, F., and Munkvold, G. P. (2008) Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies. J Agric Food Chem 56, 3900–3911.

    Article  PubMed  CAS  Google Scholar 

  12. Beacham, A., Antoniw, J., and Hammond-Kosack, K. (2009) A genomic fungal foray. The Biologist 56, 98–105.

    Google Scholar 

  13. Desjardins, A. E. (2006) Fusarium Mycotoxins - Chemistry, Genetics and Biology, The American Phytopathological Society, St. Paul, Minnesota USA.

    Google Scholar 

  14. Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S., and Fujimura, M. (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71, 2105–2123.

    Article  PubMed  CAS  Google Scholar 

  15. Winnenburg, R., Urban, M., Beacham, A., Baldwin, T. K., Holland, S., Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K. E., and Kohler, J. (2008) PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 36, D572–576.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, N. A., Urban, M., Van de Meene, A. M. L., and Hammond-Kosack, K. E. (2010) The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology 114, 535–571.

    Article  Google Scholar 

  17. Audenaert, K., Callewaert, E., Hofte, M., De Saeger, S., and Haesaert, G. (2010) Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol 10, 112.

    Article  PubMed  Google Scholar 

  18. Buerstmayr, H., Ban, T., and Anderson, J. A. (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128, 1–26.

    Article  CAS  Google Scholar 

  19. Polley, R. W., and Turner, J. A. (1995) Surveys of stem base diseases and Fusarium Ear Diseases in winter-wheat in England, Wales and Scotland, 1989-1990. Annals of Applied Biology 126, 45–59.

    Article  Google Scholar 

  20. Gilbert, J., Clear, R. M., Ward, T. J., Gaba, D., Tekauz, A., Turkington, T. K., Woods, S. M., Nowicki, T., and O’Donnell, K. (2010) Relative aggressiveness and production of 3-or 15-acetyl deoxynivalenol and deoxynivalenol by Fusarium graminearum in spring wheat. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie 32, 146–152.

    Article  CAS  Google Scholar 

  21. Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., and Desjardins, A. E. (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genetics & Biology 36, 224–233.

    Article  CAS  Google Scholar 

  22. Kimura, M., Tokai, T., O’Donnell, K., Ward, T. J., Fujimura, M., Hamamoto, H., Shibata, T., and Yamaguchi, I. (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Letters 539, 105–110.

    Article  PubMed  CAS  Google Scholar 

  23. Alexander, N. J., McCormick, S., Waalwijk, C., and Proctor, R. H. (2010) Genetic basis for the 3ADON and 15 ADON trichothecene chemotypes in Fusarium graminearum. In: 10th Eur. conf. fungal Genetics, Leiden, The Netherlands.

    Google Scholar 

  24. Tag, A. G., Garifullina, G. F., Peplow, A. W., Ake, C., Phillips, T. D., Hohn, T. M., and Beremand, M. N. (2001) A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Applied and Environmental Microbiology 67, 5294–5302.

    Article  PubMed  CAS  Google Scholar 

  25. Seong, K.-Y., Pasquali, M., Zhou, X., Song, J., Karen, H., McCormick, S., Dong, Y., Xu, J.-R., and Kistler, H. C. (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology 9999.

    Google Scholar 

  26. McCormick, S. P., Harris, L. J., Alexander, N. J., Ouellet, T., Saparno, A., Allard, S., and Desjardins, A. E. (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70, 2044–2051.

    Article  PubMed  CAS  Google Scholar 

  27. Meek, I. B., Peplow, A. W., Ake, C., Phillips, T. D., and Beremand, M. N. (2003) Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Applied and Environ-mental Microbiology 69, 1607–1613.

    Article  PubMed  CAS  Google Scholar 

  28. McCormick, S. P., Alexander, N. J., Trapp, S. E., and Hohn, T. M. (1999) Disruption of TRI101, the Gene Encoding Trichothecene 3-O-Acetyltransferase, from Fusarium sporotrichioides. Applied and Environmental Microbiology 65, 5252–5256.

    PubMed  CAS  Google Scholar 

  29. Cuomo, C. A., Guldener, U., Xu, J. R., Trail, F., Turgeon, B. G., Di Pietro, A., Walton, J. D., Ma, L. J., Baker, S. E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y. L., Decaprio, D., Gale, L. R., Gnerre, S., Goswami, R. S., Hammond-Kosack, K., Harris, L. J., Hilburn, K., Kennell, J. C., Kroken, S., Magnuson, J. K., Mannhaupt, G., Mauceli, E., Mewes, H. W., Mitterbauer, R., Muehlbauer, G., Munsterkotter, M., Nelson, D., O’Donnell, K., Ouellet, T., Qi, W., Quesneville, H., Roncero, M. I., Seong, K. Y., Tetko, I. V., Urban, M., Waalwijk, C., Ward, T. J., Yao, J., Birren, B. W., and Kistler, H. C. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317, 1400–1402.

    Article  PubMed  CAS  Google Scholar 

  30. Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J. R., Adam, G., Mewes, H. W., Muehlbauer, G. J., and Kistler, H. C. (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genetics and Biology 43, 316–325.

    Article  PubMed  Google Scholar 

  31. Jansen, C., von Wettstein, D., Schafer, W., Kogel, K. H., Felk, A., and Maier, F. J. (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America 102, 16892–16897.

    Article  PubMed  CAS  Google Scholar 

  32. Ochiai, N., Tokai, T., Takahashi-Ando, N., Fujimura, M., and Kimura, M. (2007) Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. FEMS Microbiol Lett 275, 53–61.

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt-Heydt, M., and Geisen, R. (2007) A microarray for monitoring the production of mycotoxins in food. Int J Food Microbiol 117, 131–140.

    Article  PubMed  CAS  Google Scholar 

  34. Baldwin, T. K., Urban, M., Brown, N., and Hammond-Kosack, K. E. (2010) A role for Topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Molecular Plant-Microbe Interactions 23, 566–577.

    Article  PubMed  CAS  Google Scholar 

  35. Urban, M., Mott, E., Farley, T., and Hammond-Kosack, K. (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology 4, 347–359.

    Article  PubMed  CAS  Google Scholar 

  36. Miller, J. D., Taylor, N., and Greenhalgh, R. (1983) Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum. Canadian Journal of Microbiology 29, 1171–1178.

    Article  CAS  Google Scholar 

  37. Jiao, F., Kawakami, A., and Nakajima, T. (2008) Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiology Letters 285, 212–219.

    Article  PubMed  CAS  Google Scholar 

  38. Gardiner, D. M., Kazan, K., and Manners, J. M. (2009) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol, 604–613.

    Google Scholar 

  39. Gardiner, D. M., Osborne, S., Kazan, K., and Manners, J. M. (2009) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155, 3149–3156.

    Article  PubMed  CAS  Google Scholar 

  40. Ramirez, M. L., Chulze, S., and Magan, N. (2006) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology 106, 291–296.

    Article  PubMed  CAS  Google Scholar 

  41. Ponts, N., Pinson-Gadais, L., Verdal-Bonnin, M.-N., Barreau, C., and Richard-Forget, F. (2006) Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett 258, 102–107.

    Article  PubMed  CAS  Google Scholar 

  42. Hope, R., Aldred, D., and Magan, N. (2005) Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Letters in Applied Microbiology 40, 295–300.

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt-Heydt, M., Magan, N., and Geisen, R. (2008) Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284, 142–149.

    Article  PubMed  CAS  Google Scholar 

  44. Ponts, N., Couedelo, L., Pinson-Gadais, L., Verdal-Bonnin, M. N., Barreau, C., and Richard-Forget, F. (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett 293, 255–262.

    Article  PubMed  CAS  Google Scholar 

  45. Tacke, B. K., and Casper, H. H. (1996) Determination of deoxynivalenol in wheat, barley and malt by column cleanup and gas chromatography with electron capture detection. Journal of the Association of Official Analytical Chemists 79, 472–475.

    CAS  Google Scholar 

  46. Harris, L. J., Alexander, N. J., Saparno, A., Blackwell, B., McCormick, S. P., Desjardins, A. E., Robert, L. S., Tinker, N., Hattori, J., Piche, C., Schernthaner, J. P., Watson, R., and Ouellet, T. (2007) A novel gene cluster in Fusarium graminearum contains a gene that contributes to butenolide synthesis. Fungal Genet Biol 44, 293–306.

    Article  PubMed  CAS  Google Scholar 

  47. Lowe, R. G., Allwood, J. W., Galster, A. M., Urban, M., Daudi, A., Canning, G. G., Ward, J., Beale, M., and Hammond-Kosack, K. (2010) A combined 1H NMR and ESI-MS analysis to understand the basal metabolism of plant pathogenic Fusarium species. Mol Plant Microbe Interact 23, 1605–1818.

    Article  PubMed  CAS  Google Scholar 

  48. Gardiner, D. M., Kazan, K., and Manners, J. M. (2009) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 604–613.

    Google Scholar 

  49. Gardiner, D. M., Kazan, K., and Manners, J. M. (2009) Novel Genes of Fusarium graminearum That Negatively Regulate Deoxynivalenol Production and Virulence. Molecular Plant-Microbe Interactions 22, 1588–1600.

    Article  PubMed  CAS  Google Scholar 

  50. Ward, J. L., Harris, C., Lewis, J., and Beale, M. H. (2003) Assessment of H-1 NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62, 949–957.

    Article  PubMed  CAS  Google Scholar 

  51. Ehrlich, K. C., and Daigle, K. W. (1987) Protein-synthesis inhibition by 8-Oxo-12,13-epoxytri-chothecenes. Biochimica Et Biophysica Acta 923, 206–213.

    Article  PubMed  CAS  Google Scholar 

  52. Ueno, Y., Nakajima, M., Sakai, K., Ishii, K., Sato, N., and Shimada, N. (1973) Comparative toxicology of trichothene mycotoxins -inhibition of protein-synthesis in animal cells. J Biochem-Tokyo 74, 285–296.

    PubMed  CAS  Google Scholar 

  53. Hilton, A. J. (1999) Mechanisms of resistance to Fusarium ear blight in winter wheat (Triticum aestivum L.), In Harper Adams Agricultural College in collaboration with Plant Breeding International, Open University, Cambridge.

    Google Scholar 

  54. Holzapfel, J., Voss, H. H., Miedaner, T., Korzun, V., Haberle, J., Schweizer, G., Mohler, V., Zimmermann, G., and Hartl, L. (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theoretical and Applied Genetics 117, 1119–1128.

    Article  PubMed  Google Scholar 

  55. Srinivasachary, Gosman, N., Steed, A., Simmonds, J., Leverington-Waite, M., Wang, Y., Snape, J., and Nicholson, P. (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theoretical and Applied Genetics 116, 1145–1153.

    Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK. MJ was supported by a grant from Bayer CropScience. RL and GC were supported by a BBSRC grant awarded within the special initiative on plant and microbial metabolomics (BB/D007224/1). We thank Neil Brown for critical reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim E. Hammond-Kosack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lowe, R., Jubault, M., Canning, G., Urban, M., Hammond-Kosack, K.E. (2012). The Induction of Mycotoxins by Trichothecene Producing Fusarium Species. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics