Skip to main content
Book cover

Astrocytes pp 499–514Cite as

Assessment of Glial Function in the In Vivo Retina

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Glial cells, traditionally viewed as passive elements in the CNS, are now known to have many essential functions. Many of these functions have been revealed by work on retinal glial cells. This work has been conducted almost exclusively on ex vivo preparations and it is essential that retinal glial cell functions be characterized in vivo as well. To this end, we describe an in vivo rat preparation to assess the functions of retinal glial cells. The retina of anesthetized, paralyzed rats is viewed with confocal microscopy and laser speckle flowmetry to monitor glial cell responses and retinal blood flow. Retinal glial cells are labeled with the Ca2+ indicator dye Oregon Green 488 BAPTA-1 and the caged Ca2+ compound NP-EGTA by injection of the compounds into the vitreous humor. Glial cells are stimulated by photolysis of caged Ca2+ and the activation state of the cells assessed by monitoring Ca2+ indicator dye fluorescence. We find that, as in the ex vivo retina, retinal glial cells in vivo generate both spontaneous and evoked intercellular Ca2+ waves. We also find that stimulation of glial cells leads to the dilation of neighboring retinal arterioles, supporting the hypothesis that glial cells regulate blood flow in the retina. This in vivo preparation holds great promise for assessing glial cell function in the healthy and pathological retina.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. E. A. Newman. Retinal glia. In Encyclopedia of Neuroscience, L. R. Squire, Ed. (Academic Press, Oxford, 2009), vol. 8, pp. 225–232.

    Google Scholar 

  2. P. Kofuji, E. A. Newman. Potassium homeostasis in glia. In Encyclopedia of Neuroscience, L. R. Squire, Ed. (Academic Press, Oxford, 2009), vol. 7, pp. 867–872.

    Google Scholar 

  3. E. A. Newman, D. A. Frambach, L. L. Odette. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225, 1174 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. H. Brew, D. Attwell. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327, 707 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. E. A. Newman. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J. Neurosci. 25, 5502 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. E. A. Newman. Glial cell inhibition of neurons by release of ATP. J. Neurosci. 23, 1659 (2003).

    PubMed  CAS  Google Scholar 

  7. B. D. Clark, Z. L. Kurth-Nelson, E. A. Newman. Adenosine-evoked hyperpolarization of retinal ganglion cells is mediated by G-protein-coupled inwardly rectifying K+ and small conductance Ca2+-activated K+ channel activation. J. Neurosci. 29, 11237 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. M. R. Metea, E. A. Newman. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. D. Attwell et al. Glial and neuronal control of brain blood flow. Nature 468, 232 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. M. R. Metea, P. Kofuji, E. A. Newman. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J. Neurosci. 27, 2468 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. G. R. J. Gordon, H. B. Choi, R. L. Rungta, G. C. R. Ellis-Davies, B. A. MacVicar. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. A. I. Srienc, Z. L. Kurth-Nelson, E. A. Newman. Imaging retinal blood flow with laser speckle flowmetry. Front. Neuroenerg. 2, 128 (2010).

    Article  Google Scholar 

  13. C. B. Schaffer et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol. 4, 258 (2006).

    Article  CAS  Google Scholar 

  14. G. H. Jacobs, J. A. Fenwick, G. A. Williams. Cone-based vision of rats for ultraviolet and visible lights. J. Exp. Biol. 204, 2439 (2001).

    PubMed  CAS  Google Scholar 

  15. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21, 195 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. E. A. Newman, K. R. Zahs. Calcium waves in retinal glial cells. Science 275, 844 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Z. L. Kurth-Nelson, A. Mishra, E. A. Newman. Spontaneous glial calcium waves in the retina develop over early adulthood. J. Neurosci. 29, 11339 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. E. A. Newman. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J. Neurosci. 21, 2215 (2001).

    PubMed  CAS  Google Scholar 

  19. C. E. Riva, E. Logean, B. Falsini. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog. Ret. Eye Res. 24, 183 (2005).

    Article  Google Scholar 

  20. M. A. Franceschini et al. The effect of different anesthetics on neurovascular coupling. Neuroimage 51, 1367 (2010).

    Article  PubMed  Google Scholar 

  21. K. Kuchitsu, J. M. Ward, G. J. Allen, I. Schelle, J. I. Schroeder. Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells. New Phytol. 153, 527 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The development of the in vivo preparation was supported by Fondation Leducq, NIH EY004077, and NIH TRINOD Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Srienc, A.I., Kornfield, T.E., Mishra, A., Burian, M.A., Newman, E.A. (2012). Assessment of Glial Function in the In Vivo Retina. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics