Skip to main content

Prediction of Protein Tertiary Structures Using MUFOLD

  • Protocol
  • First Online:
Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 815))

Abstract

There have been steady improvements in protein structure prediction during the past two decades. However, current methods are still far from consistently predicting structural models accurately with computing power accessible to common users. To address this challenge, we developed MUFOLD, a hybrid method of using whole and partial template information along with new computational techniques for protein tertiary structure prediction. MUFOLD covers both template-based and ab initio predictions using the same framework and aims to achieve high accuracy and fast computing. Two major novel contributions of MUFOLD are graph-based model generation and molecular dynamics ranking (MDR). By formulating a prediction as a graph realization problem, we apply an efficient optimization approach of Multidimensional Scaling (MDS) to speed up the prediction dramatically. In addition, under this framework, we enhance the predictions consistently by iteratively using the information from generated models. MDR, in contrast to widely used static scoring functions, exploits dynamics properties of structures to evaluate their qualities, which can often identify best structures from a pool more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Browne, W. J., North, A. C., Phillips, D. C., Brew, K., Vanaman, T. C., and Hill, R. L. 1969. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme. J. Mol. Biol. 42:65–86.

    Article  PubMed  CAS  Google Scholar 

  2. K. Wuthrich, The way to NMR structures of proteins, Nature Structural Biology 2001; 8, 923–925.

    Article  PubMed  CAS  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000; 28:235–242.

    Article  PubMed  CAS  Google Scholar 

  4. The UniProt Consortium. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2008; 36:D190–D195.

    Google Scholar 

  5. Anfinsen, C.,”The formation and stabilization of protein structure”. Biochem. J. 128 (4): 737–749.

    Google Scholar 

  6. Browne, W. J., North, A. C., Phillips, D. C., Brew, K., Vanaman, T. C., and Hill,R. L. 1969. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme. J. Mol. Biol. 42:65–86.

    Article  PubMed  CAS  Google Scholar 

  7. HA. Monte carlo-minimization approach to the multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. 1987; 84:6611–6615.

    Google Scholar 

  8. Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein structure prediction by global optimization of a potential energy function. Proc. Natl.Acad. Sci. 1999; 96:5482–5485.

    Article  PubMed  CAS  Google Scholar 

  9. Simons KT, Strauss C, Baker D. Prospects for ab initio protein structural genomics. J. Mol. Biol. 2001; 306:1191–1199.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: A New Approach to Ab Initio Protein Structure Prediction. Biophys. J. 2003; 85:1145–1164.

    Article  PubMed  CAS  Google Scholar 

  11. Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253:164–170.

    Article  PubMed  CAS  Google Scholar 

  12. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial constraints. J Mol Biol 1993; 234:779–815.

    Article  PubMed  CAS  Google Scholar 

  13. Soding J, Biegert A, Lupas A. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research, 2005, 33:W244–W248.

    Article  PubMed  Google Scholar 

  14. Simons KT, Kooperberg C, Huang E, Baker D, Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions, J. Mol. Biol. 1997; 268:209–225.

    Article  PubMed  CAS  Google Scholar 

  15. Xu Y, Xu D. Protein threading using PROSPECT: Design and evaluation. Proteins: Struct Funct Bioinformatics 2000; 40:343–354.

    Article  CAS  Google Scholar 

  16. Inbar Y, Benyamini H, Nussinov R, Wolfson HJ. Protein structure prediction via combinatorial assembly of sub-structural units. Bioinformatics 2003; 19:158–168.

    Article  Google Scholar 

  17. Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins: Struct Funct Bioinformatics 2004; 56:502–518.

    Article  CAS  Google Scholar 

  18. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9:40.

    Article  PubMed  Google Scholar 

  19. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004; 32(2):526–531.

    Article  Google Scholar 

  20. Madden T, SchäfferA, Zhang J, Zhang Z, Miller W, Lipman D. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research 1997; 25(17): 3389–3402.

    Google Scholar 

  21. Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21:951–960.

    Article  PubMed  Google Scholar 

  22. Xu Y, Xu D. Protein threading using PROSPECT: Design and evaluation. Proteins: Struct Funct Bioinformatics 2000; 40:343–354.

    Article  CAS  Google Scholar 

  23. Xu Y, Xu D, Liang J. Computational Methods for Protein Structure Prediction and Modeling, I, II, Springer-Verlag, 2006.

    Google Scholar 

  24. Wu Y, Lu M, Chen M, Li J, Ma J. OPUS-Ca: A knowledge-based potential function requiring only Ca positions. Protein Science 2007; 16:1449–1463.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Z, Tegge A, Cheng J. Evaluating the absolute quality of a single protein model using structural features and support vector machines. Proteins: Struct Funct Bioinformatics 2009; 75:638–647.

    Article  CAS  Google Scholar 

  26. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science 2002; 11:2714–2726.

    Article  PubMed  CAS  Google Scholar 

  27. Borg I, Groenen P. Modern Multidimensional Scaling – theory and applications, Springer-Verlag, New York, 1997.

    Google Scholar 

  28. Torgerson WS, Multidimensional scaling of similarity, Psychometrika, 1965; 30: 379–393.

    Article  PubMed  CAS  Google Scholar 

  29. Tzeng J, Lu H, Li W. Multidimensional scaling for large genomic data sets. BMC Bioinformatics 2008; 9:179.

    Article  PubMed  Google Scholar 

  30. Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Research 2003; 31:3370–374.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y., Skolnick J., Scoring function for automated assessment of protein structure template quality. Proteins, 2004 57: 702–710.

    Article  PubMed  CAS  Google Scholar 

  32. Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kale L, and Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005;26:1781–1802.

    Article  PubMed  CAS  Google Scholar 

  33. Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks 3rd CL. Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins: Struct Funct Bioinformatics 2000; 41(1):86–97.

    Article  CAS  Google Scholar 

  34. Humphrey W, Dalke A, and Shulten K. VMD – Visual Molecular Dynamics. J. Molec. Graphics 1996; 14:33–38.

    Article  CAS  Google Scholar 

  35. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, and Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005; 26(16):1781–1802.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Institutes of Health Grant R21/R33-GM078601. Major computing resource was provided by the University of Missouri Bioinformatics Consortium. We like to thank Jianlin Cheng, Yang Zhang, and Joel L. Sussman for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, J. et al. (2012). Prediction of Protein Tertiary Structures Using MUFOLD. In: Kaufmann, M., Klinger, C. (eds) Functional Genomics. Methods in Molecular Biology, vol 815. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-424-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-424-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-423-0

  • Online ISBN: 978-1-61779-424-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics