Skip to main content

Excitotoxic Lesions of the Rodent Striatum

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

  • 934 Accesses

Abstract

This chapter reviews the most common methods and protocols used to induce and assess excitotoxic lesions of the rodent striatum. Excitotoxic agents act through glutamate receptors to initiate intracellular cascades that can result in neuronal degeneration via both apoptotic and necrotic mechanisms. Whether it is glutamate, an endogenous excitatory amino acid, or an analogue, the neurotoxic potential of the excitotoxin is dose dependent. Excitotoxic lesions of the striatum, whose post-synaptic neurones are rich in glutamate receptors, make it possible to investigate structural and functional aspects and to establish animal models of certain basal ganglia diseases that can serve as a platform to investigate numerous therapeutic avenues. Although the rodent striatum is a relatively large target, the delivery of the excitotoxin requires precise spatial and temporal delivery that can be achieved only with stereotactic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King B (1991) Comparison of electrolytic and radiofrequency lesion methods. In: Conn PM (ed), Methods in Neurosciences, Vol. 7: Lesions and Transplantation. Academic Press, New York, 90–96

    Google Scholar 

  2. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164: 719–721

    Article  PubMed  CAS  Google Scholar 

  3. Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate. Science 166: 386–388

    Article  PubMed  CAS  Google Scholar 

  4. Olney JW, Sharpe LG, Feigin RD (1972) Glutamate-induced brain damage in infant ­primates. J. Neuropathol. Exp. Neurol 31: 464–488

    Article  PubMed  CAS  Google Scholar 

  5. Lowe CU, Zavon MR., Olney JW, Sharpe LG (1970) Monosodium glutamate: specific brain lesion questioned. Science 167: 1016–1017

    Article  PubMed  CAS  Google Scholar 

  6. Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366: 211–223

    Article  PubMed  CAS  Google Scholar 

  7. Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem 60: 356–359

    Article  PubMed  CAS  Google Scholar 

  8. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13: 4181–4192

    PubMed  CAS  Google Scholar 

  9. Henshaw R, Jenkins BG, Schulz JB, Ferrante RJ, Kowall NW, Rosen BR, Beal MF (1994) Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Res 647: 161–166

    Article  PubMed  CAS  Google Scholar 

  10. Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH (2002) Behavioral and morphological comparison of two nonhuman primate models of Huntington’s disease. Neurosurgery 50, 137–145: discussion 145–146

    Google Scholar 

  11. Schapira AHV (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224: 331–335

    Article  PubMed  CAS  Google Scholar 

  12. Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF (1997) The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem 174: 193–197

    Article  PubMed  CAS  Google Scholar 

  13. Coffey J, Schwarcz R (1976) Lesions of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263: 244–246

    Article  Google Scholar 

  14. Schwarcz R, Whetsell WO, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316–318

    Article  PubMed  CAS  Google Scholar 

  15. Schwarcz R, Foster AC, French ED, Whetsell WO, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35: 19–32

    Article  PubMed  CAS  Google Scholar 

  16. Schwarcz R, Fuxe K, Hökfelt T, Terenius L, Goldstein M (1980) Effects of chronic striatal kainate lesions on some dopaminergic parameters and enkephalin immunoreactive neurons in the basal ganglia. J Neurochem 34: 772–778

    Article  PubMed  CAS  Google Scholar 

  17. Schwarcz R, Hökfelt T, Fuxe K, Jonsson G, Goldstein M, Terenius L (1979) Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp Brain Res 37: 199–216

    Article  PubMed  CAS  Google Scholar 

  18. Beal MF (1992) Role of excitotoxicity in human neurological disease. Current Opinion in Neurobiology 2: 657–662

    Article  PubMed  CAS  Google Scholar 

  19. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11: 1649–1659

    PubMed  CAS  Google Scholar 

  20. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379

    PubMed  CAS  Google Scholar 

  21. Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13: 2085–2104

    PubMed  CAS  Google Scholar 

  22. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460: 525–542

    Article  PubMed  CAS  Google Scholar 

  23. Beal MF, Marshall PE, Burd GD, Landis DM, Martin JB (1985) Excitotoxin lesions do not mimic the alteration of somatostatin in Huntington’s disease. Brain Res 361: 135–145

    Article  PubMed  CAS  Google Scholar 

  24. Divac I, Markowitsch HJ, Pritzel M (1978) Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res 151: 523–532

    Article  PubMed  CAS  Google Scholar 

  25. Vincent P, Mulle C (2009) Kainate receptors in epilepsy and excitotoxicity. Neuroscience 158: 309–323

    Article  PubMed  CAS  Google Scholar 

  26. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23: 580–587

    Article  PubMed  CAS  Google Scholar 

  27. Coyle JT (1987) Kainic acid: insights into excitatory mechanisms causing selective neuronal degeneration. Ciba Found Symp 126: 186–203

    PubMed  CAS  Google Scholar 

  28. Stone TW, Connick JH, Winn P, Hastings, MH, English M (1987) Endogenous excitotoxic agents. Ciba Found Symp 126: 204–220

    PubMed  CAS  Google Scholar 

  29. Perkins MN, Stone TW (1983) Quinolinic acid: regional variations in neuronal sensitivity. Brain Res 259: 172–176

    Article  PubMed  CAS  Google Scholar 

  30. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321: 168–171

    Article  PubMed  CAS  Google Scholar 

  31. Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB (1989) Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions. Synapse 3: 38–47

    Article  PubMed  CAS  Google Scholar 

  32. Döbrössy MD, Dunnett SB (2003) Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp Neurol 184: 274–284

    Article  PubMed  Google Scholar 

  33. Döbrössy MD, Dunnett SB (2004) Environ­mental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci 19: 159–168

    Article  PubMed  Google Scholar 

  34. Brasted PJ, Döbrössy MD, Robbins TW, Dunnett SB (1998) Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers. Brain Res Bull 46: 487–493

    Article  PubMed  CAS  Google Scholar 

  35. Döbrössy MD, Dunnett SB (2006) The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats. Exp Neurol 199: 373–383

    Article  PubMed  Google Scholar 

  36. Brady RJ, Swann JW (1986) Ketamine selectively suppresses synchronized afterdischarges in immature hippocampus. Neurosci Lett 69: 143–149

    Article  PubMed  CAS  Google Scholar 

  37. Henschke G, Wolf G, Keilhoff G (1993) Ketamine, but not glycine modulates quinolinate-induced neurodegeneration. Pol J Pharmacol 45, 339–347

    PubMed  CAS  Google Scholar 

  38. Jiang W, Büchele F, Papazoglou A, Döbrössy M, Nikkhah G (2009) Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington’s disease. J Neurosci Methods 179: 219–223

    Article  PubMed  CAS  Google Scholar 

  39. Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB (1988) Systemic approaches to modifying quinolinic acid striatal lesions in rats. J Neurosci 8: 3901–3908

    PubMed  CAS  Google Scholar 

  40. Lei H, Grinberg O, Nwaigwe CI, Hou HG, Williams H, Swartz HM, Dunn JF (2001) The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res 913: 174–179

    Article  PubMed  CAS  Google Scholar 

  41. Gross M (2001) Tranquilizers, α2-adrenergic agonists and related agents. In: Adams HR (ed), Veterinary Pharmacology and Therapeutics. Iowa State University Press, 299–342

    Google Scholar 

  42. Wright M (1982) Pharmacologic effects of ketamine and its use in veterinary medicine. J Am Vet Med Assoc 180: 1462–1471

    PubMed  CAS  Google Scholar 

  43. Döbrössy MD, Dunnett SB (2007) The corridor task: striatal lesion effects and graft-mediated recovery in a model of Huntington’s disease. Behav Brain Res 179: 326–330

    Article  PubMed  Google Scholar 

  44. Döbrössy MD, Dunnett SB (2005) Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington’s disease. Neuroscience 132: 543–552

    Article  PubMed  Google Scholar 

  45. Pearce RA, Stringer JL, Lothman EW (1989) Effect of volatile anesthetics on synaptic transmission in the rat hippocampus. Anesthesiology 71: 591–598

    Article  PubMed  CAS  Google Scholar 

  46. McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat Neuroscience 29: 503–537

    CAS  Google Scholar 

  47. Brasted PJ, Robbins TW, Dunnett SB (1999) Distinct roles for striatal subregions in mediating response processing revealed by focal excitotoxic lesions. Behav Neurosci 113: 253–264

    Article  PubMed  CAS  Google Scholar 

  48. Pisa M (1988) Motor functions of the striatum in the rat: critical role of the lateral region in tongue and forelimb reaching. Neuroscience 24: 453–463

    Article  PubMed  CAS  Google Scholar 

  49. Pisa M, Cyr J (1990) Regionally selective roles of the rat’s striatum in modality-specific discrimination learning and forelimb reaching. Behav Brain Res 37: 281–292

    Article  PubMed  CAS  Google Scholar 

  50. Whishaw IQ, Mittleman G, Bunch ST, Dunnett SB (1987) Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats. Behav Brain Res 24: 125–138

    Article  PubMed  CAS  Google Scholar 

  51. Fricker RA, Annett LE, Torres EM, Dunnett SB (1996) The placement of a striatal ibotenic acid lesion affects skilled forelimb use and the direction of drug-induced rotation. Brain Res Bull 41: 409–416

    Article  PubMed  CAS  Google Scholar 

  52. Brown VJ, Robbins TW (1989) Elementary processes of response selection mediated by distinct regions of the striatum. J Neurosci 9: 3760–3765

    PubMed  CAS  Google Scholar 

  53. Divac I (1984) The neostriatum viewed orthogonally. Ciba Found Symp 107: 201–215

    PubMed  CAS  Google Scholar 

  54. Rogers RD, Baunez C, Everitt BJ, Robbins TW (2001) Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav Neurosci 115: 799–811

    Article  PubMed  CAS  Google Scholar 

  55. Brooks SP, Trueman RC, Dunnett SB (2007) Striatal lesions in the mouse disrupt acquisition and retention, but not implicit learning, in the SILT procedural motor learning task. Brain Res 1185: 179–188

    Article  PubMed  CAS  Google Scholar 

  56. Brooks SP, Fielding SA, Döbrössy M, von Hörsten S, Dunnett SB (2009) Subtle but progressive cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance. Brain Res Bull 79: 310–315

    Article  PubMed  CAS  Google Scholar 

  57. Dunnett SB, Iversen SD (1981) Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav Brain Res 2: 189–209

    Article  PubMed  CAS  Google Scholar 

  58. Reading PJ, Dunnett SB, Robbins TW (1991) Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behav Brain Res 45: 147–161

    Article  PubMed  CAS  Google Scholar 

  59. Isacson O, Dunnett SB, Björklund A (1986) Graft-induced behavioral recovery in an animal model of Huntington disease. Proc Natl Acad Sci USA 83: 2728–2732

    Article  PubMed  CAS  Google Scholar 

  60. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91–127

    CAS  Google Scholar 

  61. Bland ST, Gonzale RA, Schallert T (1999) Movement-related glutamate levels in rat hippocampus, striatum, and sensorimotor cortex. Neurosci Lett 277: 119–122

    Article  PubMed  CAS  Google Scholar 

  62. Bland ST, Schallert T, Strong R, Aronowski J, Grotta JC, Feeney DM (2000) Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats : functional and anatomic outcome. Stroke 31: 1144–1152

    Article  PubMed  CAS  Google Scholar 

  63. Buisson A, Pateau V, Plotkine M, Boulu RG. (1991) Nigrostriatal pathway modulates striatum vulnerability to quinolinic acid. Neurosci Lett 131: 257–259

    Article  PubMed  CAS  Google Scholar 

  64. André VM, Cepeda C, Cummings DM, Jocoy EL, Fisher YE, William Yang X, Levine MS (2010) Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids. Eur J Neurosci 31, 14–28

    Article  PubMed  Google Scholar 

  65. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30: 228–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máté D. Döbrössy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Döbrössy, M.D., Büchele, F., Nikkhah, G. (2011). Excitotoxic Lesions of the Rodent Striatum. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics