Skip to main content

Analysis of Changes in Protein Level and Subcellular Localization During Cell Cycle Progression Using the Budding Yeast Saccharomyces cerevisiae

  • Protocol
  • First Online:
Book cover Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 782))

Abstract

Methods are described here to monitor changes in protein level and subcellular localization during the cell cycle progression in the budding yeast Saccharomyces cerevisiae. Cell synchronization is achieved by an α-factor-mediated block-and-release protocol. Cells are collected at different time points for the first two cell cycles upon release. Cellular DNA contents are analyzed by flow cytometry. Trichloroacetic acid protein precipitates are prepared for monitoring levels of cell cycle regulated proteins by Western blotting. The dynamic changes in protein subcellular localization patterns are examined by indirect immunofluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, A. (1994) Cell cycle checkpoints. Curr Opin Cell Biol. 6(6): pp. 872–6.

    Article  PubMed  CAS  Google Scholar 

  2. Elledge, S.J. (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274(5293): pp. 1664–72.

    Article  PubMed  CAS  Google Scholar 

  3. Hartwell, L., et al. (1994) Cell cycle checkpoints, genomic integrity, and cancer. Cold Spring Harb Symp Quant Biol. 59: pp. 259–63.

    Article  PubMed  CAS  Google Scholar 

  4. Kastan, M.B. and J. Bartek (2004) Cell-cycle checkpoints and cancer. Nature. 432(7015): pp. 316–23.

    Article  PubMed  CAS  Google Scholar 

  5. Sclafani, R.A. and T.M. Holzen (2007) Cell cycle regulation of DNA replication. Annu Rev Genet. 41: pp. 237–80.

    Article  PubMed  CAS  Google Scholar 

  6. O’Connell, M.J., N.C. Walworth, and A.M. Carr (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10(7): pp. 296–303.

    Article  PubMed  Google Scholar 

  7. Gardner, R.D. and D.J. Burke (2000) The spindle checkpoint: two transitions, two pathways. Trends Cell Biol. 10(4): pp. 154–8.

    Article  PubMed  CAS  Google Scholar 

  8. Forsburg, S.L. (2001) The art and design of genetic screens: yeast. Nat Rev Genet. 2(9): pp. 659–68.

    Article  PubMed  CAS  Google Scholar 

  9. Hartwell, L.H. and T.A. Weinert (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930): pp. 629–34.

    Article  PubMed  CAS  Google Scholar 

  10. Johnston, L.H. and A.L. Johnson (1997) Elutriation of budding yeast. Methods Enzymol. 283: pp. 342–50.

    Article  PubMed  CAS  Google Scholar 

  11. Walker, G.M. (1999) Synchronization of yeast cell populations. Methods Cell Sci. 21(2–3): pp. 87–93.

    Article  PubMed  CAS  Google Scholar 

  12. Breeden, L.L. (1997) Alpha-factor synchronization of budding yeast. Methods Enzymol. 283: pp. 332–41.

    Article  PubMed  CAS  Google Scholar 

  13. Dirick, L., T. Bohm, and K. Nasmyth (1995) Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14(19): pp. 4803–13.

    PubMed  CAS  Google Scholar 

  14. Perlman, R., et al. (1989) Rapid intracellular alkalinization of Saccharomyces cerevisiae MATa cells in response to alpha-factor requires the CDC25 gene product. Cell Signal. 1(6): pp. 577–86.

    Article  PubMed  CAS  Google Scholar 

  15. Jordan, A. and P. Reichard (1988) Ribonucleotide reductases. Annu Rev Biochem. 67: pp. 71–98.

    Article  Google Scholar 

  16. Yao, R., et al. (2003) Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA. 100(11): pp. 6628–33.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao, X., et al. (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20(13): pp. 3544–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxia Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wu, X., Liu, L., Huang, M. (2011). Analysis of Changes in Protein Level and Subcellular Localization During Cell Cycle Progression Using the Budding Yeast Saccharomyces cerevisiae . In: Li, W. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 782. Humana Press. https://doi.org/10.1007/978-1-61779-273-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-273-1_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-272-4

  • Online ISBN: 978-1-61779-273-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics