Skip to main content

Practical Approaches for Implementing Forward Genetic Strategies in Zebrafish

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 770))

Abstract

The tropical fresh water minnow, Danio rerio, more commonly known as zebrafish, has emerged rapidly over the last decade as a powerful tool for developmental geneticists. External fertilization, high fecundity, a short generation time, and optical transparency of embryos during early development combined with the amenability to a variety of genetic manipulations constitute in the zebrafish the convergence of several unique advantages for a vertebrate model system. Traditional forward genetic screens, which employ the use of a chemical mutagen such as N-ethyl-N-nitrosourea to induce mutations in the male genome, have also proven to be highly successful in the zebrafish. This chapter provides experimental approaches to successfully induce pre-meiotic mutations in the male zebrafish germline and genetic strategies to recover and maintain such mutations in subsequent generations (Section 3.1). Though discussed specifically in the context of zebrafish research in this chapter, many of these genetic approaches may also be broadly applicable in other model systems. We also discuss experimental techniques to manipulate the ploidy of zebrafish embryos, which when used in combination with the standard mutagenesis protocol significantly expedite the identification of the induced mutations (Section 3.2). Additional stand-alone procedures are provided in Section 3.3, which are also required for the execution of the experiments discussed in its preceding sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullins, M. C., Hammerschmidt, M., Haffter, P., and Nusslein-Volhard, C. (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202.

    Article  PubMed  CAS  Google Scholar 

  2. Solnica-Krezel, L., Schier, A. F., and Driever, W. (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420.

    PubMed  CAS  Google Scholar 

  3. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B., and Bradley, A. (1999) Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963.

    Article  PubMed  CAS  Google Scholar 

  4. Shibuya, T. and Morimoto, K. (1993) A review of the genotoxicity of 1-ethyl-1-nitrosourea. Mutat. Res. 297, 3–38.

    Article  PubMed  CAS  Google Scholar 

  5. Grunwald, D. J. and Streisinger, G. (1992) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet. Res. 59, 103–116.

    Article  PubMed  CAS  Google Scholar 

  6. Inoue, M., Kurihara, T., Yamashita, M., and Tatsumi, K. (1993) Effects of treatment with methyl methanesulfonate during meiotic and postmeiotic stages and maturation of spermatozoa in mice. Mutat. Res. 294, 179–186.

    Article  PubMed  CAS  Google Scholar 

  7. Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J., Jiang, Y. J., Heisenberg, C. P., Kelsh, R. N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein-Volhard, C. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.

    PubMed  CAS  Google Scholar 

  8. Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C., Malicki, J., Stemple, D. L., Stainier, D. Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., and Boggs, C. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46.

    PubMed  CAS  Google Scholar 

  9. Walker, C. (1999) Haploid screens and gamma-ray mutagenesis. Methods Cell Biol. 60, 43–70.

    Article  PubMed  CAS  Google Scholar 

  10. Beattie, C. E., Raible, D. W., Henion, P. D., and Eisen, J. S. (1999) Early pressure screens. Methods Cell Biol. 60, 71–86.

    Article  PubMed  CAS  Google Scholar 

  11. Pelegri, F., Dekens, M. P., Schulte-Merker, S., Maischein, H. M., Weiler, C., and Nusslein-Volhard, C. (2004) Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev. Dyn. 231, 324–335.

    Article  PubMed  CAS  Google Scholar 

  12. Kaufman, M. H. (1982) The chromosome complement of single-pronuclear haploid mouse embryos following activation by ethanol treatment. J. Embryol. Exp. Morphol. 71, 139–154.

    PubMed  CAS  Google Scholar 

  13. Modlinski, J. A. (1975) Haploid mouse embryos obtained by microsurgical removal of one pronucleus. J. Embryol. Exp. Morphol. 33, 897–905.

    PubMed  CAS  Google Scholar 

  14. Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296.

    Article  PubMed  CAS  Google Scholar 

  15. Pogany, G. C. (1971) Effects of sperm ultraviolet irradiation on the embryonic development of Rana pipiens. Dev. Biol. 26, 336–345.

    Article  PubMed  CAS  Google Scholar 

  16. Chourrout, D. (1982) Gynogenesis caused by ultraviolet irradiation of salmonid sperm. J. Exp. Zool. 223, 175–181.

    Article  PubMed  CAS  Google Scholar 

  17. Hoppe, P. C. and Illmensee, K. (1977) Microsurgically produced homozygous-diploid uniparental mice. Proc. Natl. Acad. Sci. USA 74, 5657–5661.

    Article  PubMed  CAS  Google Scholar 

  18. Trottier, T. M. and Armstrong, J. B. (1976) Diploid gynogenesis in the Mexican axolotl. Genetics 83, 783–792.

    PubMed  CAS  Google Scholar 

  19. Thiebaud, C. H., Colombelli, B., and Muller, W. P. (1984) Diploid gynogenesis in Xenopus laevis and the localization with respect to the centromere of the gene for periodic albinism ap. J. Embryol. Exp. Morphol. 83, 33–42.

    PubMed  CAS  Google Scholar 

  20. Noramly, S., Zimmerman, L., Cox, A., Aloise, R., Fisher, M., and Grainger, R. M. (2005) A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. Mech. Dev. 122, 273–287.

    Article  PubMed  CAS  Google Scholar 

  21. Pelegri, F. and Mullins, M. C. (2004) Genetic screens for maternal-effect mutations. Methods Cell Biol. 77, 21–51.

    Article  PubMed  CAS  Google Scholar 

  22. Ungar, A. R., Helde, K. A., and Moon, R. T. (1998) Production of androgenetic haploids in zebrafish with ultraviolet light. Mol. Mar. Biol. Biotechnol. 7, 320–326.

    PubMed  CAS  Google Scholar 

  23. Corley-Smith, G. E., Lim, C. J., and Brandhorst, B. P. (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142, 1265–1276.

    PubMed  CAS  Google Scholar 

  24. Pelegri, F. and Schulte-Merker, S. (1999) A gynogenesis-based screen for maternal-effect genes in the zebrafish, Danio rerio. Methods Cell Biol. 60, 1–20.

    Article  PubMed  CAS  Google Scholar 

  25. Grunwald, D. J., Kimmel, C. B., Westerfield, M., Walker, C., and Streisinger, G. (1988) A neural degeneration mutation that spares primary neurons in the zebrafish. Dev. Biol. 126, 115–128.

    Article  PubMed  CAS  Google Scholar 

  26. Streisinger, G., Singer, F., Walker, C., Knauber, D., and Dower, N. (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112, 311–319.

    PubMed  CAS  Google Scholar 

  27. Talbot, W. S., Trevarrow, B., Halpern, M. E., Melby, A. E., Farr, G., Postlethwait, J. H., Jowett, T., Kimmel, C. B., and Kimelman, D. (1995) A homeobox gene essential for zebrafish notochord development. Nature 378, 150–157.

    Article  PubMed  CAS  Google Scholar 

  28. Dekens, M. P., Pelegri, F. J., Maischein, H. M., and Nusslein-Volhard, C. (2003) The maternal-effect gene futile cycle is essential for pronuclear congression and mitotic spindle assembly in the zebrafish zygote. Development 130, 3907–3916.

    Article  PubMed  CAS  Google Scholar 

  29. Selman, K., Wallace, R. A., Sarka, A., and Qi, X. (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218, 203–224.

    Article  Google Scholar 

  30. Brand, M., Granato, M., and Nusslein-Volhard, C. (2002) Keeping and raising zebrafish. In Zebrafish’A Practical Approach, Nüsslein-Volhard C. and Dahm R., eds. Oxford University Press, Oxford, Vol. 261, pp. 7–37.

    Google Scholar 

  31. Trevarrow, B. (2004) Reduced fish death during ENU (N-ethyl-N-nitrosourea mutagenesis), 6th International Conference on Zebrafish Development and Genetics, p. 629 (Abstract).

    Google Scholar 

  32. Pelegri, F. (2002) Mutagenesis. In Zebrafish’A Practical Approach, Nüsslein-Volhard C. and Dahm R., eds. Oxford University Press, Oxford, Vol. 261, pp. 145–174.

    Google Scholar 

  33. Talbot, W. S. and Schier, A. F. (1999) Positional cloning of mutated zebrafish genes. Methods Cell Biol. 60, 259–286.

    Article  PubMed  CAS  Google Scholar 

  34. Rawls, J. F., Frieda, M. R., McAdow, A. R., Gross, J. P., Clayton, C. M., Heyen, C. K., and Johnson, S. L. (2003) Coupled mutagenesis screens and genetic mapping in zebrafish. Genetics 163, 997–1009.

    PubMed  CAS  Google Scholar 

  35. Kane, D. A., Hammerschmidt, M., Mullins, M. C., Maischein, H. M., Brand, M., van Eeden, F. J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C. P., Jiang, Y. J., Kelsh, R. N., Odenthal, J., Warga, R. M., and Nusslein-Volhard, C. (1996) The zebrafish epiboly mutants. Development 123, 47–55.

    PubMed  CAS  Google Scholar 

  36. Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., Brand, M., van Eeden, F. J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C. P., Jiang, Y. J., Kelsh, R. N., and Nusslein-Volhard, C. (1996) Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93.

    PubMed  CAS  Google Scholar 

  37. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is funded by NIH RO1 GM065303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Pelegri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nair, S., Pelegri, F.J. (2011). Practical Approaches for Implementing Forward Genetic Strategies in Zebrafish. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 770. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-210-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-210-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-209-0

  • Online ISBN: 978-1-61779-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics