Skip to main content

Homeostatic Regulation of Glutamate Neurotransmission in Primary Neuronal Cultures

  • Protocol
  • First Online:
Book cover In Vitro Neurotoxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 758))

Abstract

Glutamate is the mayor excitatory neurotransmitter in vertebrate nervous system. It has a crucial role in most brain functions under physiological conditions through the activation of both ionotropic and metabotropic glutamate receptors. In addition, extracellular glutamate concentration is tightly regulated through different excitatory amino acid transporters (EAAT). Glutamate neurotransmission is also involved in the neurotoxic effects of many environmental chemicals and drugs. Furthermore, homeostatic changes in glutamate neurotransmission appear in response to prolonged block/enhancement of electrical activity. Here, we describe different approaches to evaluate alterations in glutamate neurotransmission regarding glutamate receptors and glutamate transporters by using primary cultures of neurons and astrocytes. The methods are based on the increased fluorescence of calcium-sensitive probes in response to glutamate agonists, on radioligand binding to glutamate receptors and transport sites, and on inmunocytochemistry visualization of glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olney J.W. (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721.

    Article  PubMed  CAS  Google Scholar 

  2. Choi D.W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  3. Tordera R.M., Totterdell S., Wojcik S.M. et al. (2007) Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci 25, 281–290.

    Article  PubMed  CAS  Google Scholar 

  4. Olney J.W. and Farber N.B. (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52, 998–1007.

    Article  PubMed  CAS  Google Scholar 

  5. Allen J.W., Mutkus L.A. and Aschner M. (2001) Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 902, 92–100.

    Article  PubMed  CAS  Google Scholar 

  6. Fonfría E., Vilaró M.T., Babot Z. et al. (2005) Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells. J Neurosci Res 79, 545–553.

    Article  PubMed  Google Scholar 

  7. Vale C., Damgaard I., Suñol C. et al. (1998) Cytotoxic action of lindane in cerebellar granule neurons is mediated by interaction with inducible GABA(B) receptors. J Neurosci Res 52, 286–294.

    Article  PubMed  CAS  Google Scholar 

  8. Briz V., Galofré M. and Suñol C. (2010) Reduction of glutamatergic neurotransmission by prolonged exposure to dieldrin involves NMDA receptor internalization and metabotropic glutamate receptor 5 downregulation. Toxicol Sci 113, 138–149.

    Article  PubMed  CAS  Google Scholar 

  9. Babot Z., Vilaró M.T. and Suñol C. (2007) Long-term exposure to dieldrin reduces gamma-aminobutyric acid type A and N-methyl-D-aspartate receptor function in primary cultures of mouse cerebellar granule cells. J Neurosci Res 85, 3687–3695.

    Article  PubMed  CAS  Google Scholar 

  10. Anis N.A., Berry S.C., Burton N.R. and Lodge D. (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79, 565–575.

    Article  PubMed  CAS  Google Scholar 

  11. Crump F.T., Dillman K.S. and Craig A.M. (2001) cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J Neurosci 21, 5079–5088.

    PubMed  CAS  Google Scholar 

  12. Watt A.J., van Rossum M.C., MacLeod K.M. et al. (2000) Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670.

    Article  PubMed  CAS  Google Scholar 

  13. Bouchelouche P., Belhage B., Frandsen A. et al. (1989) Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res 76, 281–291.

    Article  PubMed  CAS  Google Scholar 

  14. Gegelashvili G., Danbolt N.C. and Schousboe A. (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69, 2612–2615.

    Article  PubMed  CAS  Google Scholar 

  15. Nakanishi S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  16. Reynolds I.J. (2001) Measurement of cation movement in primary cultures using fluorescent dyes. Curr Protoc Neurosci Chapter 7, Unit 7.

    Google Scholar 

  17. Schwarz S., Zhou G.Z., Katki A.G. and Rodbard D. (1990) L-homocysteate stimulates [3H]MK-801 binding to the phencyclidine recognition site and is thus an agonist for the N-methyl-D-aspartate-operated cation channel. Neuroscience 37, 193–200.

    Article  PubMed  CAS  Google Scholar 

  18. Murray F., Kennedy J., Hutson P.H. et al (2000) Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro. Eur J Pharmacol 397, 263–270.

    Article  PubMed  CAS  Google Scholar 

  19. Itzhak Y. and Stein I. (1992) Sensitization to the toxic effects of cocaine in mice is associated with the regulation of N-methyl-D-aspartate receptors in the cortex. J Pharmacol Exp Ther 262, 464–470.

    PubMed  CAS  Google Scholar 

  20. De Blasi A., O’Reilly K. and Motulsky H.J. (1989) Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci 10, 227–229.

    Article  Google Scholar 

  21. Erikson K. and Aschner M. (2002) Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 23, 595–602.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson J.W. and Ascher P. (1984) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531.

    Article  Google Scholar 

  23. Nowak L., Bregestovski P. and Ascher P. (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  24. Javitt D.C. and Zukin S.R. (1989) Interaction of [3H]MK-801 with multiple states of the N-methyl-D-aspartate receptor complex of rat brain. Proc Natl Acad Sci USA 86, 740–744.

    Article  PubMed  CAS  Google Scholar 

  25. Frandsen A. and Schousboe A. (1990) Development of excitatory amino acid induced cytotoxicity in cultured neurons. Int J Dev Neurosci 8, 209–216.

    Article  PubMed  CAS  Google Scholar 

  26. Pertusa M., García-Matas S., Rodríguez-Farré E. et al (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem 101, 794–805.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant PI 06/1212 (Spanish Ministry of Health) and SGR 2009/SGR/214 (Generalitat de Catalunya, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Suñol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Briz, V., Suñol, C. (2011). Homeostatic Regulation of Glutamate Neurotransmission in Primary Neuronal Cultures. In: Costa, L., Giordano, G., Guizzetti, M. (eds) In Vitro Neurotoxicology. Methods in Molecular Biology, vol 758. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-170-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-170-3_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-169-7

  • Online ISBN: 978-1-61779-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics