Skip to main content

Tandem Affinity Purification and Identification of Heterotrimeric G Protein-Associated Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 756))

Abstract

Heterotrimeric G proteins are the main signal-transducing molecules activated by G protein-coupled receptors. Their GTP-dependent activation leads to the regulation of different effectors such as adenylyl cyclases, phospholipases, and RhoGEFs. To understand the full biological consequences of GPCR signalling and to further understand the cross-talk with other signalling pathways, the complement of proteins associating with heterotrimeric G proteins needs to be identified. Here we describe our mass spectrometry-based proteomic approaches for the study of Gβγ and Gα protein complexes. This approach is predicated on the establishment of mammalian cell lines constitutively or inducibly expressing affinity-tagged versions of Gβγ or wild-type and constitutively active Gα subunits, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., Mazzoni, M. R., and Hamm, H. E. (2003) Insights into G protein structure, function, and regulation, Endocr Rev 24, 765–81.

    Article  PubMed  CAS  Google Scholar 

  2. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030–2.

    Article  PubMed  CAS  Google Scholar 

  3. Gingras, A. C., Aebersold, R., and Raught, B. (2005) Advances in protein complex analysis using mass spectrometry. J Physiol 563, 11–21.

    Article  PubMed  CAS  Google Scholar 

  4. Angers, S. (2008) Proteomic analyses of protein complexes in the Wnt pathway. Methods Mol Biol 468, 22330.

    Article  PubMed  CAS  Google Scholar 

  5. Angers, S., Thorpe, C. J., Biechele, T. L., Goldenberg, S. J., Zheng, N., MacCoss, M. J., and Moon, R. T. (2006) The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348–57.

    Article  PubMed  CAS  Google Scholar 

  6. Angers, S., Li, T., Yi, X., MacCoss, M. J., Moon, R. T., and Zheng, N. (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–3.

    PubMed  CAS  Google Scholar 

  7. Keefe, A. D., Wilson, D. S., Seelig, B., and Szostak, J. W. (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23, 440–6.

    Article  PubMed  CAS  Google Scholar 

  8. Klevit, R. E., Blumenthal, D. K., Wemmer, D. E., and Krebs, E. G. (1985) Interaction of calmodulin and a calmodulin-binding peptide from myosin light chain kinase: major spectral changes in both occur as the result of complex formation. Biochemistry 24, 81527.

    Article  PubMed  CAS  Google Scholar 

  9. Ahmed, S. M., Daulat, A. M., and Angers, S. (2010) G protein betagamma subunits regulate cell adhesion through Rap1a and its effector Radil. J Biol Chem 285, 6538–51.

    Article  PubMed  CAS  Google Scholar 

  10. Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S. (1992) Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol Cell Biol 12, 468793.

    PubMed  CAS  Google Scholar 

  11. Landis, C. A., Masters, S. B., Spada, A., Pace, A. M., Bourne, H. R., and Vallar, L. (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340, 692–6.

    Article  PubMed  CAS  Google Scholar 

  12. Wong, Y. H., Federman, A., Pace, A. M., Zachary, I., Evans, T., Pouyssegur, J., and Bourne, H. R. (1991) Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation. Nature 351, 635.

    Article  PubMed  CAS  Google Scholar 

  13. Xu, N., Bradley, L., Ambdukar, I., and Gutkind, J. S. (1993) A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is hig hly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci U S A 90, 6741–5.

    Article  PubMed  CAS  Google Scholar 

  14. Fukuhara, S., Murga, C., Zohar, M., Igishi, T., and Gutkind, J. S. (1999) A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 274, 5868–79.

    Article  PubMed  CAS  Google Scholar 

  15. Hynes, T. R., Hughes, T. E., and Berlot, C. H. (2004) Cellular localization of GFP-tagged alpha subunits, Methods Mol Biol 237, 233–46.

    PubMed  CAS  Google Scholar 

  16. Hughes, T. E., Zhang, H., Logothetis, D. E., and Berlot, C. H. (2001) Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J Biol Chem 276, 4227–35.

    Article  PubMed  CAS  Google Scholar 

  17. Yu, J. Z., and Rasenick, M. M. (2002) Real-time visualization of a fluorescent G(alpha)(s): dissociation of the activated G protein from plasma membrane. Mol Pharmacol 61, 352–9.

    Article  PubMed  CAS  Google Scholar 

  18. Tall, G. G., Krumins, A. M., and Gilman, A. G. (2003) Mammalian Ric-8A (synembryn) is a heterotrimeric Galpha protein guanine nucleotide exchange factor. J Biol Chem 278, 8356–62.

    Article  PubMed  CAS  Google Scholar 

  19. Kozasa, T., Jiang, X., Hart, M. J., Sternweis, P. M., Singer, W. D., Gilman, A. G., Bollag, G., and Sternweis, P. C. (1998) p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109–11.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki, N., Nakamura, S., Mano, H., and Kozasa, T. (2003) Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci U S A 100, 7338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Angers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ahmed, S.M., Daulat, A.M., Angers, S. (2011). Tandem Affinity Purification and Identification of Heterotrimeric G Protein-Associated Proteins. In: Luttrell, L., Ferguson, S. (eds) Signal Transduction Protocols. Methods in Molecular Biology, vol 756. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-160-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-160-4_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-159-8

  • Online ISBN: 978-1-61779-160-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics