Skip to main content

Chromatin Immunoprecipitation to Verify or to Identify In Vivo Protein–DNA Interactions

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 754))

Abstract

Chromatin immunoprecipitation (ChIP) is a valuable tool to detect the interaction in vivo between a DNA-associated protein and DNA fragments. Combined with approaches to assess gene expression in response to accumulation of a transcription factor, it is possible to identify direct responsive targets from targets that are indirectly responsive to accumulation of the transcription factor. ChIP may be used to confirm in vivo association of a transcriptional regulator with suspected target DNA fragments. ChIP may also be used to discover new targets, and when combined with high-throughput approaches to identify DNA fragments associated with a transcription factor, it may provide a tool to study the gene regulatory networks active during plant development and/or response to the environment. Furthermore, ChIP is also a powerful means to map epigenetic modifications within a genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germann, S., Juul-Jensen, T., Letarnec, B., and Gaudin, V. (2006) DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J. 48, 153–163.

    Article  PubMed  CAS  Google Scholar 

  2. Greil, F., Moorman, C., and van Steensel, B. (2006) DamID: mapping of in vivo protein–genome interactions using tethered DNA adenine methyltransferase, in Methods in Enzymology. DNA Microarrays Part A: Array Platforms and Wet-Bench Protoc. 410, 342–359.

    Google Scholar 

  3. Ikuta, T., and Kan, Y. W. (1991) In vivo protein DNA interactions at the beta-globin gene locus. Proc. Natl. Acad. Sci. USA 88, 10188–10192.

    Article  PubMed  CAS  Google Scholar 

  4. Kato, K., Nomoto, M., Izumi, H., Ise, T., Nakano, S., Niho, Y., and Kohno, K. (2000) Structure and functional analysis of the human STAT3 gene promoter: alteration of chromatin structure as a possible mechanism for the upregulation in cisplatin-resistant cells. BBA-Gene Struct. Expr. 1493, 91–100.

    Article  CAS  Google Scholar 

  5. Braybrook, S. A., Stone, S. L., Park, S., Bui, A. Q., Lee, B. H., Fischer, R. L., Goldberg, R. B., and Harada, J. J. (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc. Natl. Acad. Sci. USA 103, 3468–3473.

    Article  PubMed  CAS  Google Scholar 

  6. Ko, J. H., Kim, W. C., and Han, K. H. (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 60, 649–665.

    Article  PubMed  CAS  Google Scholar 

  7. Passarinho, P., Ketelaar, T., Xing, M. Q., van Arkel, J., Maliepaard, C., Hendriks, M. W., Joosen, R., Lammers, M., Herdies, L., den Boer, B., van der Geest, L., and Boutilier, K. (2008) BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol. Biol. 68, 225–237.

    Article  PubMed  CAS  Google Scholar 

  8. Sablowski, R. W. M., and Meyerowitz, E. M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93–103.

    Article  PubMed  CAS  Google Scholar 

  9. Grandori, C., Mac, J., Siëbelt, F., Ayer, D. E., and Eisenman, R. N. (1996) Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J. 15, 4344–4357.

    PubMed  CAS  Google Scholar 

  10. Orlando, V., Strutt, H., and Paro, R. (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214.

    Article  PubMed  CAS  Google Scholar 

  11. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. TIBS 25, 99–104.

    PubMed  CAS  Google Scholar 

  12. Wang, H., Tang, W., Zhu, C., and Perry, S. (2002) A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS-domain protein that preferentially accumulates in embryos. Plant J. 32, 831–843.

    Article  PubMed  CAS  Google Scholar 

  13. Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A. V., Tariq, M., and Paszkowski, J. (2004) Chromatin techniques for plant cells. Plant J. 39, 776–789.

    Article  PubMed  CAS  Google Scholar 

  14. Das, P. M., Ramachandran, K., vanWert, J., and Singal, R. (2004) Chromatin immunoprecipitation assay. Biotechniques 37, 961–969.

    PubMed  CAS  Google Scholar 

  15. Buck, M. J., and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, C., Boden, E., Desai, M., Pascuzzi, P., and Arias, J. (2001) In vivo target promoter-binding activities of a xenobiotic stress-activated TGA factor. Plant J. 28, 237–243.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X. W. (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731–749.

    Article  PubMed  CAS  Google Scholar 

  18. Zheng, Y., Ren, N., Wang, H., Stromberg, A. J., and Perry, S. E. (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like 15. Plant Cell 21, 2563–2577.

    Article  PubMed  CAS  Google Scholar 

  19. Kaufmann, K., Muiño, J. M., Jauregui, R., Airoldi, C. A., Smaczniak, C., Krajewski, P., and Angenent, G. C. (2009) Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 7, 0854–0875.

    Article  CAS  Google Scholar 

  20. Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G. (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21, 403–419.

    Article  PubMed  CAS  Google Scholar 

  21. Kaufmann, K., Muino, J. M., Osteras, M., Farinelli, L., Krajewski, P., and Angenent, G. C. (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat. Protoc. 5, 457–472.

    Article  PubMed  CAS  Google Scholar 

  22. Morohashi, K., Xie, Z., and Grotewold, E. (2009) Gene-specific and genome-wide ChIP approaches to study plant transcriptional networks. In Methods in Molecular Biology: Plant Systems Biology (Belostotsky, D. A., Ed.), pp 3–12, Springer, Clifton, NJ.

    Google Scholar 

  23. Ricardi, M. M., Gonzalez, R. M., and Iusem, N. D. (2010) Protocol: fine-tuning of a chromatin immunoprecipitation (ChIP) protocol in tomato. Plant Methods 6, article 11. doi: 10.1186/1746-4811-6-11.

    Google Scholar 

  24. Xie, Z. D., and Grotewold, E.. (2008) Serial ChIP as a tool to investigate the co-localization or exclusion of proteins on plant genes. Plant Methods 4, article 25. doi: 10.1186/1746-4811-4-25.

    Google Scholar 

  25. Aparicio, O., Geisberg, J. V., and Struhl, K. (2004) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr. Protoc. Cell Biol. Macromol. Interact. Cell Suppl. 23, 1–23. John Wiley & Sons, Inc.

    Google Scholar 

  26. Kim, T. H., and Ren, B. (2006) Genome-wide analysis of protein–DNA interactions. Annu. Rev. Genomics Hum. Genet. 7, 81–102.

    Article  PubMed  Google Scholar 

  27. Nowak, D. E., Tian, B., and Brasier, A. R. (2005) Two-step cross-linking method for identification of NF-KB gene network by chromatin immunoprecipitation. Biotechniques 39, 715–725.

    Article  PubMed  CAS  Google Scholar 

  28. de Folter, S., Urbanus, S. L., van Zuijlen, L. G., Kaufmann, K., and Angenent, G. C. (2007) Tagging of MADS domain proteins for chromatin immunoprecipitation. BMC Plant Biol. 7, article 47. doi: 10.1186/1471-2229-7-47.

    Google Scholar 

  29. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., and Séraphin, B. (2001) The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 24, 218–229.

    Article  PubMed  CAS  Google Scholar 

  30. Harding, E. W., Tang, W., Nichols, K. W., Fernandez, D. E., and Perry, S. E. (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol. 133, 653–663.

    Article  PubMed  CAS  Google Scholar 

  31. Thakare, D., Tang, W., Hill, K., and Perry, S. E. (2008) The MADS-domain transcriptional regulator AGAMOUS-Like 15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 146, 1663–1672.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu, C., and Perry, S. E. (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J. 41, 583–594.

    Article  PubMed  Google Scholar 

  33. Mukhopadhyay, A., Deplancke, B., Walhout, A. J. M., and Tissenbaum, H. A. (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat. Protoc. 3, 698–709.

    Article  PubMed  CAS  Google Scholar 

  34. Gehrig, H. H., Winter, K., Cushman, J., Borland, A., and Taybi, T. (2000) An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharides. Plant Mol. Biol. Rep. 18, 369–376.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jeanne Hartman for comments on the manuscript. This work was supported by grants from the National Science Foundation (IBN-9984274 and IOS-0922845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharyn E. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zheng, Y., Perry, S.E. (2011). Chromatin Immunoprecipitation to Verify or to Identify In Vivo Protein–DNA Interactions. In: Yuan, L., Perry, S. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 754. Humana Press. https://doi.org/10.1007/978-1-61779-154-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-154-3_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-153-6

  • Online ISBN: 978-1-61779-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics