Skip to main content

A Method to Map Spatiotemporal pH Changes Inside Living Cells Using a pH-Triggered DNA Nanoswitch

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

A few cellular compartments maintain acidic environments in their interiors that are crucial for their proper function. Alteration in steady state organelle pH is closely linked to several diseases. Although a few probes exist to measure pH of cell compartments, each has several associated limitations. We present a high-performance pH sensor, a DNA nanoswitch, a convenient method to map spatiotemporal pH changes in endocytic pathways. DNA has been used to make a variety of nanoswitches in vitro . However, the present DNA nanoswitch functions as a pH sensing device equally efficiently intracellularly as it does in vitro. This DNA nanoswitch functions as a FRET-based pH sensor in the pH regime of 5.5–7, with high dynamic range between pH 5.8 and 7. It is efficiently engulfed by Drosophila hemocytes through endocytosis and can be used to measure the acidity of the endocytic vesicles that it marks during their maturation till their lysosomal stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukherjee, S., Ghosh, R. N., Maxfield, F. R. (1997) Endocytosis. Physiological Reviews 77, 759–803.

    CAS  Google Scholar 

  2. McCoy, K.L. (1990) Contribution of endosomal acidification to antigen processing. Semin. Immunol 2, 239–246.

    CAS  Google Scholar 

  3. Weisz, O. A. (2003) Organelle Acidification and Disease. Traffic 4, 57–64.

    Article  CAS  Google Scholar 

  4. Paroutis, P., Touret, N., Grinstein, S. (2004) The pH of the Secretory Pathway: Measurement, Determinants, and Regulation. Physiology 19, 207–215.

    Article  CAS  Google Scholar 

  5. Palokangas, H., Metsikko, K., Vaananen, K. (1994) Active vacuolar H+-ATPase is required for both endocytic and exocytic processes during viral infection of BHK-21 cells. J. Biol. Chem. 269, 17577–17585.

    CAS  Google Scholar 

  6. Guinea, R., Carrasco, L. (1995) Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. J. Virol 69, 2306–2312.

    CAS  Google Scholar 

  7. Yu, I. M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman, P. R., Kuhn, R. J., Rossmann, M. G., Chen, J. (2008) Structure of the immature dengue virus at low ph primes proteolytic maturation Science 319, 1834–1837.

    Article  CAS  Google Scholar 

  8. Piwon, N., Gunther. W., Schwake, M., Bosl, M. R., Jentsch, T. J. (2000) ClC-5 Cl channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408, 369–373.

    Article  CAS  Google Scholar 

  9. Barasch, J., Kiss, B., Prince, A., Saiman, L., Gruenert, D., Al-Awqati, Q. (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352, 70–73.

    Article  CAS  Google Scholar 

  10. Anderson, R. G., Pathak, R. K. (1985) Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell 40, 635–643.

    Article  CAS  Google Scholar 

  11. Wu, M. M., Llopis, J., Adams, S., McCaffery, J. M., Kulomaa, M. S., Machen, T. E., Moore, H. P., Tsien, R. Y. (2000) Organelle pH studies using targeted avidin and fluorescein-biotin. Chem. Biol. 7, 197–209.

    Article  CAS  Google Scholar 

  12. Miesenbock, G., De Angelis, D. A., Rothman, J. E. ( 1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins Nature 394, 192–195.

    Article  CAS  Google Scholar 

  13. Ohkuma, S., Poole, B. (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA. 75, 3327–3331.

    Article  CAS  Google Scholar 

  14. Sipe, D. M., Murphy, R. F. (1987) High-resolution kinetics of transferrin acidification in BALB/3 T3 cells exposed to pH 6 followed by temperature sensitive alkalinization during recycling. Proc. Natl. Acad. Sci. USA. 84, 7119–7123.

    Article  CAS  Google Scholar 

  15. Modi, S., Swetha, M.G., Goswami, D., Gupta, G. D., Mayor, S., Krishnan, Y. (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotech. 4, 325–330.

    Article  CAS  Google Scholar 

  16. Majumdar, D. S., Smirnova, I., Kasho, V., Nir, E., Kong, X., Weiss, S., Kaback, H. R. (2007) Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc. Natl. Acad. Sci. USA. 104, 12640–12645.

    Article  CAS  Google Scholar 

  17. Krishna, M. M., Srivastava, A., Periasamy, N. (2001) Rotational dynamics of surface probes in lipid vesicles. Biophys. Chem. 90, 123–133.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Mayor and M.G. Swetha for inputs on endocytosis assay, and the Nanoscience and Technology Initiative of the Department of Science and Technology, Govt of India (GoI). S.M. thanks the Council of Scientific and Industrial Research, GoI, for funding. Y.K. thanks the Department of Biotechnology, GoI, for the Innovative Young Biotechnologist Award and NCBS for a start-up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamuna Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Modi, S., Krishnan, Y. (2011). A Method to Map Spatiotemporal pH Changes Inside Living Cells Using a pH-Triggered DNA Nanoswitch. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics