Skip to main content

Electrophysiological, Biochemical, and Bioinformatic Methods for Studying CFTR Channel Gating and Its Regulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

CFTR is the only member of the ABC (ATP-binding cassette) protein superfamily known to function as an ion channel. Most other ABC proteins are ATP-driven transporters, in which a cycle of ATP binding and hydrolysis, at intracellular nucleotide binding domains (NBDs), powers uphill substrate translocation across the membrane. In CFTR, this same ATP-driven cycle opens and closes a transmembrane pore through which chloride ions flow rapidly down their electrochemical gradient. Detailed analysis of the pattern of gating of CFTR channels thus offers the opportunity to learn about mechanisms of function not only of CFTR channels but also of their ABC transporter ancestors. In addition, CFTR channel gating is subject to complex regulation by kinase-mediated phosphorylation at multiple consensus sites in a cytoplasmic regulatory domain that is unique to CFTR. Here we offer a practical guide to extract useful information about the mechanisms that control opening and closing of CFTR channels: on how to plan (including information obtained from analysis of multiple sequence alignments), carry out, and analyze electrophysiological and biochemical experiments, as well as on how to circumvent potential pitfalls.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    After reducing the cyclic gating scheme to a closed-to-open equilibrium by impairing hydrolysis, this equilibrium constant can be obtained from P o, as K eq= P o/(1–P o)

References

  1. Vergani, P., Lockless, S. W., Nairn, A. C., and Gadsby, D. C. (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433, 876–880.

    PubMed  CAS  Google Scholar 

  2. Mense, M., Vergani, P., White, D. M., Altberg, G., Nairn, A. C., and Gadsby, D. C. (2006) In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J. 25, 4728–4740.

    PubMed  CAS  Google Scholar 

  3. Hopfner, K. P., Karcher, A., Shin, D. S., Craig, L., Arthur, L. M., Carney, J. P., et al. (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800.

    PubMed  CAS  Google Scholar 

  4. Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1038–1040.

    Google Scholar 

  5. Smith, P. C., Karpowich, N., Millen, L., Moody, J. E., Rosen, J., Thomas, P. J., et al. (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149.

    PubMed  CAS  Google Scholar 

  6. Chen, T. Y., Chen, M. F., and Lin, C. W. (2003) Electrostatic control and chloride regulation of the fast gating of ClC-0 chloride. J. Gen. Physiol. 122, 641–651.

    PubMed  CAS  Google Scholar 

  7. Dawson, R. J., and Locher, K. P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.

    PubMed  CAS  Google Scholar 

  8. Dawson, R. J., and Locher, K. P. (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938.

    PubMed  CAS  Google Scholar 

  9. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L., and Chen, J. (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.

    PubMed  CAS  Google Scholar 

  10. Dassa, E. B. P. (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152, 211–229.

    PubMed  CAS  Google Scholar 

  11. Zeltwanger, S., Wang, F., Wang, G. T., Gillis, K. D., and Hwang, T. C. (1999) Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J. Gen. Physiol. 113, 541–554.

    PubMed  CAS  Google Scholar 

  12. Vergani, P., Nairn, A. C., and Gadsby, D. C. (2003) On the mechanism of MgATP-dependent gating of CFTR Cl- channels. J. Gen. Physiol. 121, 17–36.

    PubMed  CAS  Google Scholar 

  13. Csanády, L., Chan, K. W., Seto-Young, D., Kopsco, D. C., Nairn, A. C., and Gadsby, D. C. (2000) Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. J. Gen. Physiol. 116, 477–500.

    PubMed  Google Scholar 

  14. Baukrowitz, T., Hwang, T. C., Nairn, A. C., and Gadsby, D. C. (1994) Coupling of CFTR Cl- channel gating to an ATP hydrolysis cycle. Neuron 12, 473–482.

    PubMed  CAS  Google Scholar 

  15. Gunderson, K. L., and Kopito, R. R. (1995) Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis. Cell 82, 231–239.

    PubMed  CAS  Google Scholar 

  16. Carson, M. R., Winter, M. C., Travis, S. M., and Welsh, M. J. (1995b) Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl- channels. J. Biol. Chem. 270, 20466–20472.

    PubMed  CAS  Google Scholar 

  17. Hwang, T. C., Nagel, G., Nairn, A. C., and Gadsby, D. C. (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 4698–4702.

    PubMed  CAS  Google Scholar 

  18. Carson, M. R., Travis, S. M., and Welsh, M. J. (1995a) The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J. Biol. Chem. 270, 1711–1717.

    PubMed  CAS  Google Scholar 

  19. Aleksandrov, L., Aleksandrov, A. A., Chang, X. B., and Riordan, J. R. (2002) The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. J. Biol. Chem. 277, 15419–15425.

    PubMed  CAS  Google Scholar 

  20. Basso, C., Vergani, P., Nairn, A. C., and Gadsby, D. C. (2003) Prolonged nonhydrolytic interaction of nucleotide with CFTR’s NH2-terminal nucleotide binding domain and its role in channel gating. J. Gen. Physiol. 122, 333–348.

    PubMed  CAS  Google Scholar 

  21. Tsai, M. F., Shimizu, H., Sohma, Y., Li, M., and Hwang, T. C. (2009) State-dependent modulation of CFTR gating by pyrophosphate. J. Gen. Physiol. 133, 405–419.

    PubMed  CAS  Google Scholar 

  22. Ward, A., Reyes, C. L., Yu, J., Roth, C. B., and Chang, G. (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl. Acad. Sci. USA 104, 19005–19010.

    PubMed  CAS  Google Scholar 

  23. Gadsby, D. C. (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat. Rev. Mol. Cell. Biol. 10, 344–352.

    PubMed  CAS  Google Scholar 

  24. Jordan, I. K., Kota, K. C., Cui, G., Thompson, C. H., and McCarty, N. A. (2008) Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporter. Proc. Natl. Acad. Sci. USA 105, 18865–18870.

    PubMed  CAS  Google Scholar 

  25. Chen, T. Y., and Hwang, T. C. (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol. Rev. 88, 351–387.

    PubMed  CAS  Google Scholar 

  26. Muallem, D., and Vergani, P. (2009) ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 247–255.

    PubMed  CAS  Google Scholar 

  27. Csanády, L., Vergani, P., and Gadsby, D. C. (2010) Strict coupling between CFTR’s catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc. Natl. Acad. Sci. USA 107, 1241–1246.

    PubMed  Google Scholar 

  28. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Phosphorylation of the R domain by camp-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036.

    PubMed  CAS  Google Scholar 

  29. Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P., and Nairn, A. C. (1992) Phosphorylation of the cystic fibrosis transmembrane conductance. J. Biol. Chem. 267, 12742–12752.

    PubMed  CAS  Google Scholar 

  30. Jia, Y., Mathews, C. J., and Hanrahan, J. W. (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem. 272, 4978–4984.

    PubMed  CAS  Google Scholar 

  31. Chappe, V., Hinkson, D. A., Zhu, T., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (2003) Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J. Physiol. 548, 39–52.

    PubMed  CAS  Google Scholar 

  32. Gadsby, D. C., Vergani, P., and Csanady, L. (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440, 477–483.

    PubMed  CAS  Google Scholar 

  33. Ostedgaard, L. S., Baldursson, O., Vermeer, D. W., Welsh, M. J., and Robertson, A. D. (2000) A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc. Natl. Acad. Sci. USA 97, 5657–5662.

    PubMed  CAS  Google Scholar 

  34. Baker, J. M., Hudson, R. P., Kanelis, V., Choy, W. H., Thibodeau, P. H., Thomas, P. J., et al. (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738–745.

    PubMed  CAS  Google Scholar 

  35. Chang, X. B., Tabcharani, J. A., Hou, Y. X., Jenson, T. J., Kartner, N., Alon, N., et al. (1993) Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J. Biol. Chem. 268, 11304–11311.

    PubMed  CAS  Google Scholar 

  36. Csanady, L., Seto-Young, D., Chan, K. W., Cenciarelli, C., Angel, B. B., Qin, J., et al. (2005) Preferential phosphorylation of R-domain serine 768 dampens activation of CFTR channels by PKA. J. Gen. Physiol. 125, 171–181.

    PubMed  CAS  Google Scholar 

  37. Lewis, H. A., Buchanan, S. G., Burley, S. K., Conners, K., Dickey, M., Dorwart, M., et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293.

    PubMed  CAS  Google Scholar 

  38. Kanelis, V., Hudson, R. P., Thibodeau, P. H., Thomas, P. J., and Forman-Kay, J. D. (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR. EMBO J. 29, 263–277, PMCID: PMC2808376.

    PubMed  CAS  Google Scholar 

  39. Csanady, L., Chan, K. W., Nairn, A. C., and Gadsby, D. C. (2005) Functional roles of non conserved structural segments in CFTR’s NH2-terminal nucleotide binding domain. J. Gen. Physiol. 125, 43–55.

    PubMed  CAS  Google Scholar 

  40. Zerhusen, B., and Ma, J. (1999) Function of the second nucleotide-binding fold in the CFTR chloride channel. FEBS Lett. 459, 177–185.

    PubMed  CAS  Google Scholar 

  41. Chan, K. W., Csanády, L., Nairn, A. C., and Gadsby, D. C. (1999) Deletion analysis of CFTR channel R domain using severed molecules. Biophys. J. 76, A405.

    Google Scholar 

  42. Wang, W., Wu, J., Bernard, K., Li, G., Wang, G., Bevensee, M. O., et al. (2010) ATP-independent CFTR channel gating and allosteric modulation by phosphorylation. Proc. Natl. Acad. Sci. USA 107, 3888–3893.

    PubMed  CAS  Google Scholar 

  43. Bompadre, S. G., Sohma, Y., Li, M., and Hwang, T. C. (2007) G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J. Gen. Physiol. 129, 285–298.

    PubMed  CAS  Google Scholar 

  44. King, J. D., Jr., Fitch, A. C., Lee, J. K., McCane, J. E., Mak, D. O., Foskett, J. K., et al. (2009) AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. Am. J. Physiol. Cell Physiol. 297, C94–C101.

    PubMed  CAS  Google Scholar 

  45. Kongsuphol, P., Cassidy, D., Hieke, B., Treharne, K. J., Schreiber, R., Mehta, A., et al. (2009) Mechanistic insight into control of CFTR by AMPK. J. Biol. Chem. 284, 5645–5653.

    PubMed  CAS  Google Scholar 

  46. Wilkinson, D. J., Strong, T. V., Mansoura, M. K., Wood, D. L., Smith, S. S., Collins, F. S., et al. (1997) CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am. J. Physiol. 273, L127–L133.

    PubMed  CAS  Google Scholar 

  47. Zhang, L., Aleksandrov, L. A., Zhao, Z., Birtley, J. R., Riordan, J. R., et al. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J. Struct. Biol. 167, 242–251.

    PubMed  CAS  Google Scholar 

  48. Chan, K. W., Csanády, L., Seto-Young, D., Nairn, A. C., and Gadsby, D. C. (2000) Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator’s NH2-terminal nucleotide binding domain. J. Gen. Physiol. 116, 163–180.

    PubMed  CAS  Google Scholar 

  49. Loo, T. W., and Clarke, D. M. (2001) Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J. Biol. Chem. 276, 14972–14979.

    PubMed  CAS  Google Scholar 

  50. He, L., Aleksandrov, A. A., Serohijos, A. W., Hegedus, T., Aleksandrov, L. A., Cui, L., et al. (2008) Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating. J. Biol. Chem. 283, 26383–26390.

    PubMed  CAS  Google Scholar 

  51. Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., et al. (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA 105, 3256–3261.

    PubMed  CAS  Google Scholar 

  52. Cotten, J. F., and Welsh, M. J. (1998) Covalent modification of the nucleotide binding domains of cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 273, 31873–31879.

    PubMed  CAS  Google Scholar 

  53. Zhang, Z.-R., Song, B., and McCarty, N. A. (2005b) State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 280, 41997–42003.

    PubMed  CAS  Google Scholar 

  54. Seibert, F. S., Chang, X. B., Aleksandrov, A. A., Clarke, D. M., Hanrahan, J. W., and Riordan, J. R. (1999) Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Biochim. Biophys. Acta 1461, 275–283.

    PubMed  CAS  Google Scholar 

  55. Ramjeesingh, M., Li, C., Garami, E., Huan, L. J., Hewryk, M., Wang, Y., Galley, K., et al. (1997) A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR). Biochem. J. 327, 17–21.

    PubMed  CAS  Google Scholar 

  56. Aleksandrov, L., Mengos, A., Chang, X., Aleksandrov, A., and Riordan, J. R. (2001) Differential interactions of nucleotides at the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 276, 12918–12923.

    PubMed  CAS  Google Scholar 

  57. Berger, H. A., Travis, S. M., and Welsh, M. J. (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. J. Biol. Chem. 268, 2037–2047.

    PubMed  CAS  Google Scholar 

  58. Travis, S. M., Berger, H. A., and Welsh, M. J. (1997) Protein phosphate 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 94, 11055–11060.

    PubMed  CAS  Google Scholar 

  59. Luo, J., Pato, M. D., Riordan, J. R., and Hanrahan, J. W. (1998) Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. Am. J. Physiol. 274, C1397–C1410.

    PubMed  CAS  Google Scholar 

  60. Chappe, V., Hinkson, D. A., Howell, L. D., Evagelidis, A., Liao, J., Chang, X. B., et al. (2004) Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 101, 390–395.

    PubMed  CAS  Google Scholar 

  61. Wilkinson, D. J., Mansoura, M. K., Watson, P. Y., Smit, L. S., Collins, F. S., and Dawson, D. C. (1996) CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state. J. Gen. Physiol. 107, 103–119.

    PubMed  CAS  Google Scholar 

  62. Sheppard, D. N., Gray, M. A., Gong, X., Sohma, Y., Kogan, I., Benos, D. J., et al. (2004) The patch-clamp and planar lipid bilayer techniques: powerful and versatile tools to investigate the CFTR Cl- channel. J. Cyst. Fibros. 3, 101–108.

    PubMed  CAS  Google Scholar 

  63. Thomas, P., and Smart, T. G. (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 51, 187–200.

    PubMed  CAS  Google Scholar 

  64. Bear, C., Li, C., Kartner, N., Bridges, R., Jensen, T., Ramjeesingh, M., et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818.

    PubMed  CAS  Google Scholar 

  65. Sakmann, B., Neher, E. (eds.) (1995) Single-Channel Recording, Plenum Press, New York, NY, p. 700.

    Google Scholar 

  66. Ashley, R. H. (ed.) (1995) Ion Channels: A Practical Approach. Practical Approach Series, Oxford University Press, Oxford, p. 328.

    Google Scholar 

  67. Benndorf, K. (1995) Low-noise recording, in (Sakmann, B., Neher, E. eds.) Single-Channel Recording. Plenum Press, New York, NY, pp. 129–145.

    Google Scholar 

  68. Kijima, S., and Kijima, H. (1987) Statistical analysis of channel current from a membrane patch I. Some stochastic properties of ion channels or molecular systems in equilibrium. J. Theor. Biol. 128, 423–434.

    PubMed  CAS  Google Scholar 

  69. Winter, M. C., Sheppard, D. N., Carson, M. R., and Welsh, M. J. (1994) Effect of ATP concentration on CFTR Cl- channels: a kinetic analysis of channel regulation. Biophys. J. 66, 1398–1403.

    PubMed  CAS  Google Scholar 

  70. Zhang, Z. R., Cui, G., Liu, X., Song, B., Dawson, D. C., and McCarty, N. A. (2005a) Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. J. Biol. Chem. 280, 458–468.

    PubMed  CAS  Google Scholar 

  71. Lansdell, K. A., Kidd, J. F., Delaney, S. J., Wainwright, B. J., and Sheppard, D. N. (1998) Regulation of murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in Chinese hamster ovary cells. J. Physiol. 512(Pt 3), 751–764.

    PubMed  CAS  Google Scholar 

  72. Venkataramanan, L., and Sigworth, F. J. (2002) Applying hidden Markov models to the analysis of single ion channel activity. Biophys. J. 82, 1930–1942.

    PubMed  CAS  Google Scholar 

  73. Qin, F. (2004) Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501.

    PubMed  CAS  Google Scholar 

  74. Sigworth, F. J., and Sine, S. M. (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054.

    PubMed  CAS  Google Scholar 

  75. Horn, R., and Lange, K. (1983) Estimating kinetic constants from single channel data. Biophys. J. 43, 207–223.

    PubMed  CAS  Google Scholar 

  76. Ball, F. G., and Sansom, M. S. (1989) Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc. R. Soc. Lond. B Biol. Sci. 236, 385–416.

    PubMed  CAS  Google Scholar 

  77. Qin, F., Auerbach, A., and Sachs, F. (1996) Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280.

    PubMed  CAS  Google Scholar 

  78. Bompadre, S. G., Ai, T., Cho, J. H., Wang, X., Sohma, Y., Li, M., et al. (2005a) CFTR gating I: characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR). J. Gen. Physiol. 125, 361–375.

    PubMed  CAS  Google Scholar 

  79. Magleby, K. L., and Pallotta, B. S. (1983) Burst kinetics of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. 344, 605–623.

    PubMed  CAS  Google Scholar 

  80. Jackson, M. B., Wong, B. S., Morris, C. E., Lecar, H., and Christian, C. N. (1983) Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys. J. 42, 109–114.

    PubMed  CAS  Google Scholar 

  81. Csanády, L. (2000) Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms. Biophys. J. 78, 785–799.

    PubMed  Google Scholar 

  82. Weinreich, F., Riordan, J. R., and Nagel, G. (1999) Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. J. Gen. Physiol. 114, 55–70.

    PubMed  CAS  Google Scholar 

  83. Bompadre, S. G., Cho, J. H., Wang, X., Zou, X., Sohma, Y., Li, M., et al. (2005) CFTR gating II: effects of nucleotide binding on the stability of open states. J. Gen. Physiol. 125, 377–394.

    PubMed  CAS  Google Scholar 

  84. Csanády, L., Nairn, A. C., and Gadsby, D. C. (2006) Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. J. Gen. Physiol. 128, 523–533.

    PubMed  Google Scholar 

  85. Segel, I. H. (1993) Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, Wiley, New York, NY.

    Google Scholar 

  86. Ishihara, H., and Welsh, M. J. (1997) Block by MOPS reveals a conformation change in the CFTR pore produced by ATP hydrolysis. Am. J. Physiol. 273, C1278–C1289.

    PubMed  CAS  Google Scholar 

  87. Aleksandrov, A. A., and Riordan, J. R. (1998) Regulation of CFTR ion channel gating by MgATP. FEBS Lett. 431, 97–101.

    PubMed  CAS  Google Scholar 

  88. Mathews, C. J., Tabcharani, J. A., and Hanrahan, J. W. (1998) The CFTR chloride channel: nucleotide interactions and temperature-dependent gating. J. Membr. Biol. 163, 55–66.

    PubMed  CAS  Google Scholar 

  89. Fersht, A. (2002) Structure and Mechanism in Protein Science, 4th ed. W.H. Freeman and Company, New York, NY.

    Google Scholar 

  90. Faiman, G. A., and Horovitz, A. (1996) On the choice of reference mutant states in the application of the double-mutant cycle method. Protein Eng. 9, 315–316.

    PubMed  CAS  Google Scholar 

  91. Auerbach, A. (2007) How to turn the reaction coordinate into time. J. Gen. Physiol. 130, 543–546.

    PubMed  CAS  Google Scholar 

  92. Chakrapani, S., Bailey, T. D., and Auerbach, A. (2004) Gating dynamics of the acetylcholine receptor extracellular domain. J. Gen. Physiol. 123, 341–356.

    PubMed  CAS  Google Scholar 

  93. Purohit, P., Mitra, A., and Auerbach, A. (2007) A stepwise mechanism for acetylcholine receptor channel gating. Nature 446, 930–933.

    PubMed  CAS  Google Scholar 

  94. Scott-Ward, T. S., Cai, Z., Dawson, E. S., Doherty, A., Da Paula, A. C., Davidson, H., et al. (2007) Chimeric constructs endow the human CFTR Cl- channel with the gating behavior of murine CFTR. Proc. Natl. Acad. Sci. USA 104, 16365–16370.

    PubMed  CAS  Google Scholar 

  95. Aleksandrov, A. A., Cui, L., and Riordan, J. R. (2009) Relationship between nucleotide binding and ion channel gating in cystic fibrosis transmembrane conductance regulator. J. Physiol. 587, 2875–2886.

    PubMed  CAS  Google Scholar 

  96. Csanády, L. (2009) Application of rate-equilibrium free energy relationship analysis to nonequilibrium ion channel gating mechanisms. J. Gen. Physiol. 134, 129–136.

    PubMed  Google Scholar 

  97. Galtier, N., and Dutheil, J. (2007) Coevolution within and between genes. Genome Dyn. 3, 1–12.

    PubMed  CAS  Google Scholar 

  98. Fitch, W. M., and Markowitz, E. (1970) An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4, 579–593.

    PubMed  CAS  Google Scholar 

  99. Gutell, R. R., Larsen, N., and Woese, C. R. (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Micro. Biol. 58, 10–26.

    CAS  Google Scholar 

  100. Codoñer, F. M., O’Dea, S., and Fares, M. A. (2008) Reducing the false positive rate in the non-parametric analysis of molecular coevolution. BMC Evol. Biol. 8, 106.

    PubMed  Google Scholar 

  101. Olmea, O., and Valencia, A. (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des. 2, S25–S32.

    PubMed  CAS  Google Scholar 

  102. Lockless, S. W., and Ranganathan, R. (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299.

    PubMed  CAS  Google Scholar 

  103. Dekker, J. P., Fodor, A., Aldrich, R. W., and Yellen, G. (2004) A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 20, 1565–1572.

    PubMed  CAS  Google Scholar 

  104. Kass, I., and Horovitz, A. (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 48, 611–617.

    PubMed  CAS  Google Scholar 

  105. Fares, M. A., and Travers, S. A. A. (2006) A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Genetics 173, 9–23.

    PubMed  CAS  Google Scholar 

  106. Dunn, S. D., Wahl, L. M., and Gloor, G. B. (2008) Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 24, 333–340.

    PubMed  CAS  Google Scholar 

  107. Dutheil, J., Pupko, T., Jean-Marie, A., and Galtier, N. (2005) A model-based approach for detecting coevolving positions in a molecule. Mol. Biol. Evol. 22, 1919–1928.

    PubMed  CAS  Google Scholar 

  108. Dutheil, J., and Galtier, N. (2007) Detecting groups of coevolving positions in a molecule: a clustering approach. BMC Evol. Biol. 7, 242.

    PubMed  Google Scholar 

  109. Dimmic, M. W., Hubisz, M. J., Bustamante, C. D., and Nielsen, R. (2005) Detecting coevolving amino acid sites using Bayesian mutational mapping. Bioinformatics 21(Suppl 1), i126–i135.

    PubMed  CAS  Google Scholar 

  110. Fleishman, S. J., Yifrach, O., and Ben-Tal, N. (2004) An evolutionarily conserved network of amino acids mediates gating in voltage-dependent potassium channels. J. Mol. Biol. 340, 307–318.

    PubMed  CAS  Google Scholar 

  111. Pollock, D. D., Taylor, W. R., and Goldman, N. (1999) Coevolving protein residues: maximum likelihood identification and relationship to structure. J. Mol. Biol. 287, 187–198.

    PubMed  CAS  Google Scholar 

  112. Yeang, C.-H., and Haussler, D. (2007) Detecting coevolution in and among protein domains. PLoS Comput. Biol. 3, e211.

    PubMed  Google Scholar 

  113. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  114. Eddy, S. R. (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211.

    PubMed  Google Scholar 

  115. Notredame, C., and Abergel, C. (2003) Using multiple alignment methods to assess the quality of genomic data analysis, in Bioinformatics and Genomes: Current Perspectives. Horizon Scientific Press, Wymondham, Norfolk, pp. 30–55.

    Google Scholar 

  116. Lassmann, T., and Sonnhammer, E. L. L. (2005) Automatic assessment of alignment quality. Nucleic Acids Res. 33, 7120–7128. doi:10.1093/nar/gki1020.

    PubMed  CAS  Google Scholar 

  117. Mornon, J. P., Lehn, P., and Callebaut, I. (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell. Mol. Life Sci. 66, 3469–3486.

    PubMed  CAS  Google Scholar 

  118. Alexander, C., Ivetac, A., Liu, X., Norimatsu, Y., Serrano, J. R., Landstrom, A., et al. (2009) Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry 48, 10078–10088.

    PubMed  CAS  Google Scholar 

  119. Fodor, A. A., and Aldrich, R. W. (2004b) On evolutionary conservation of thermodynamic coupling in proteins. J. Biol. Chem. 279, 19046–19050.

    PubMed  CAS  Google Scholar 

  120. Fuchs, A., Martin-Galiano, A. J., Kalman, M., Fleishman, S., Ben-Tal, N., and Frishman, D. (2007) Co-evolving residues in membrane proteins. Bioinformatics 23, 3312–3319.

    PubMed  CAS  Google Scholar 

  121. Burger, L., and van Nimwegen, E. (2010) Disentangling direct from indirect co-evolution of residues in protein alignments. PLoS Comput. Biol. 6, e1000633.

    PubMed  Google Scholar 

  122. Felsenstein, J. (1985) Phylogenies and the comparative method. Am. Nat. 125, 1.

    Google Scholar 

  123. Wollenberg, K. R., and Atchley, W. R. (2000) Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc. Natl. Acad. Sci. USA 97, 3288–3291.

    PubMed  CAS  Google Scholar 

  124. Tillier, E. R. M., and Lui, T. W. H. (2003) Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics 19, 750–755.

    PubMed  CAS  Google Scholar 

  125. Noivirt, O., Eisenstein, M., and Horovitz, A. (2005) Detection and reduction of evolutionary noise in correlated mutation analysis. Protein Eng. Des. Sel. 18, 247–253.

    PubMed  CAS  Google Scholar 

  126. Fodor, A. A., and Aldrich, R. W. (2004) Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56, 211–221.

    PubMed  CAS  Google Scholar 

  127. Martin, L. C., Gloor, G. B., Dunn, S. D., and Wahl, L. M. (2005) Using information theory to search for co-evolving residues in proteins. Bioinformatics 21, 4116–4124.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Csanády or David C. Gadsby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Csanády, L., Vergani, P., Gulyás-Kovács, A., Gadsby, D.C. (2011). Electrophysiological, Biochemical, and Bioinformatic Methods for Studying CFTR Channel Gating and Its Regulation. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_28

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics