Skip to main content

Atomic Force Microscopy in Mechanobiology: Measuring Microelastic Heterogeneity of Living Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 736))

Abstract

Recent findings clearly demonstrate that cells feel mechanical forces, and respond by altering their ­phenotype and modulating their mechanical environment. Atomic force microscope (AFM) indentation can be used to mechanically stimulate cells and quantitatively characterize their elastic properties, providing critical information for understanding their mechanobiological behavior. This review focuses on the experimental and computational aspects of AFM indentation in relation to cell biomechanics and pathophysiology. Key aspects of the indentation protocol (including preparation of substrates, selection of indentation parameters, methods for contact point detection, and further post-processing of data) are covered. Historical perspectives on AFM as a mechanical testing tool as well as studies of cell mechanics and physiology are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Barratt, M.R. and Pool, S.L., Principles of Clinical Medicine for Space Flight. (2008), Springer: New York. p. xiv, 596 p.

    Google Scholar 

  2. Wolff, J. (1870) Ueber die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum. Virchows Archiv, 50(3): p. 389–450.

    Google Scholar 

  3. Fung, Y.C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag. xii, 569.

    Google Scholar 

  4. Trepat, X., Puig, F., Gavara, N., Fredberg, J.J., Farre, R., and Navajas, D. (2006) Effect of stretch on structural integrity and micromechanics of human alveolar epithelial cell monolayers exposed to thrombin. Am J Physiol Lung Cell Mol Physiol, 290(6): p. L1104–10.

    PubMed  CAS  Google Scholar 

  5. Liu, M., Xu, J., Tanswell, A.K., and Post, M. (1993) Stretch-induced growth-promoting activities stimulate fetal rat lung epithelial cell proliferation. Exp Lung Res, 19(4): p. 505–17.

    PubMed  CAS  Google Scholar 

  6. Ilizarov, G.A. (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res, (238): p. 249–81.

    PubMed  Google Scholar 

  7. Isenberg, B.C. and Tranquillo, R.T. (2003) Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann Biomed Eng, 31(8): p. 937–49.

    PubMed  Google Scholar 

  8. Lim, C.T., Zhou, E.H., and Quek, S.T. (2006) Mechanical models for living cells – a review. J Biomech, 39(2): p. 195–216.

    PubMed  CAS  Google Scholar 

  9. Discher, D.E., Janmey, P., and Wang, Y.L. (2005) Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751): p. 1139–43.

    PubMed  CAS  Google Scholar 

  10. Vogel, V. and Sheetz, M. (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 7(4): p. 265–75.

    PubMed  CAS  Google Scholar 

  11. Jiang, G., Huang, A.H., Cai, Y., Tanase, M., and Sheetz, M.P. (2006) Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys J, 90(5): p. 1804–9.

    PubMed  CAS  Google Scholar 

  12. Bischofs, I.B. and Schwarz, U.S. (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci U S A, 100(16): p. 9274–9.

    PubMed  CAS  Google Scholar 

  13. Patel, A.J., Lazdunski, M., and Honore, E. (2001) Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol, 13(4): p. 422–8.

    PubMed  CAS  Google Scholar 

  14. Baneyx, G., Baugh, L., and Vogel, V. (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA, 99(8): p. 5139–43.

    PubMed  CAS  Google Scholar 

  15. Smith, M.L., Gourdon, D., Little, W.C., Kubow, K.E., Eguiluz, R.A., Luna-Morris, S., and Vogel, V. (2007) Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol, 5(10): p. e268.

    Google Scholar 

  16. Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science, 279(5350): p. 509–14.

    PubMed  CAS  Google Scholar 

  17. Choquet, D., Felsenfeld, D.P., and Sheetz, M.P. (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell, 88(1): p. 39–48.

    PubMed  CAS  Google Scholar 

  18. Icard-Arcizet, D., Cardoso, O., Richert, A., and Henon, S. (2008) Cell stiffening in response to external stress is correlated to actin recruitment. Biophys J.

    Google Scholar 

  19. Takai, E., Costa, K.D., Shaheen, A., Hung, C.T., and Guo, X.E. (2005) Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann Biomed Eng, 33(7): p. 963–71.

    PubMed  Google Scholar 

  20. Judex, S., Zhong, N., Squire, M.E., Ye, K., Donahue, L.R., Hadjiargyrou, M., and Rubin, C.T. (2005) Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue. J Cell Biochem, 94(5): p. 982–94.

    PubMed  CAS  Google Scholar 

  21. Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006) Matrix elasticity directs stem cell lineage specification. Cell, 126(4): p. 677-89.

    PubMed  CAS  Google Scholar 

  22. Jaynes, J. (1990) The origin of consciousness in the breakdown of the bicameral mind. Boston: Houghton Mifflin. 491 p.

    Google Scholar 

  23. Pelling, A.E. and Horton, M.A. (2008) An historical perspective on cell mechanics. Pflugers Arch, 456(1): p. 3–12.

    PubMed  CAS  Google Scholar 

  24. Kite, G.L. and Chambers, R., Jr. (1912) Vital staining of chromosomes and the function and structure of the nucleus. Science, 36(932): p. 639–641.

    PubMed  CAS  Google Scholar 

  25. Terreros, D.A. and Grantham, J.J. (1982) Marshall Barber and the origins of micropipette methods. Am J Physiol, 242(3): p. F293–6.

    PubMed  CAS  Google Scholar 

  26. Seifriz, W. (1920) Viscosity values of protoplasm as determined by microdissection. Botanical Gazette, 70(5): p. 360–386.

    Google Scholar 

  27. Seifriz, W. (1918) Observations on the structure of protoplasm by aid of microdissection. Biological Bulletin, 34(5): p. 307–324.

    CAS  Google Scholar 

  28. Carlson, J.G. (1946) Protoplasmic viscosity changes in different regions of the grasshopper neuroblast during mitosis. Biological Bulletin, 90(2): p. 109–121.

    PubMed  CAS  Google Scholar 

  29. Lillie, R.S. (1912) The physiological significance of the segmented structure of the striated muscle fiber. Science, 36(921): p. 247–255.

    PubMed  CAS  Google Scholar 

  30. Kite, G.L. (1913) Studies on the physical properties of protoplasm I: The physical properties of the protoplasm of certain animal and plant cells. Am J Physiol, 32(2): p. 146–164.

    Google Scholar 

  31. Matzke, R., Jacobson, K., and Radmacher, M. (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol, 3(6): p. 607–10.

    PubMed  CAS  Google Scholar 

  32. Akiyama, N., Ohnuki, Y., Kunioka, Y., Saeki, Y., and Yamada, T. (2006) Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy. J Physiol Sci, 56(2): p. 145–51.

    PubMed  Google Scholar 

  33. Northen, H.T. (1950) Alterations in the structural viscosity of protoplasm by colchicine and their relationship to c-mitosis and c-tumor formation. Am J Botany, 37(9): p. 705–711.

    CAS  Google Scholar 

  34. Rosenberg, M.D. (1963) The relative extensi­bility of cell surfaces. J Cell Biol, 17: p. 289–97.

    PubMed  CAS  Google Scholar 

  35. Weiss, P. and Garber, B. (1952) Shape and movement of mesenchyme cells as functions of the physical structure of the medium: contributions to a quantitative morphology. Proc Natl Acad Sci U S A, 38(3): p. 264–80.

    PubMed  CAS  Google Scholar 

  36. Mitchison, J.M. and Swann, M.M. (1954) The mechanical properties of the cell surface.1. The cell elastimeter. J Exp Biol, 31(3): p. 443–&.

    Google Scholar 

  37. Cave, I.D. (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol, 2(4): p. 268–278.

    Google Scholar 

  38. Chien, S., Usami, S., Dellenback, R.J., and Gregersen, M.I. (1967) Blood Viscosity: Influence of Erythrocyte Deformation. Science, 157(3790): p. 827–829.

    PubMed  CAS  Google Scholar 

  39. Fung, Y.C. and Tong, P. (1968) Theory of the sphering of red blood cells. Biophys J, 8(2): p. 175–98.

    PubMed  CAS  Google Scholar 

  40. Skalak, R., Tozeren, A., Zarda, R.P., and Chien, S. (1973) Strain energy function of red blood cell membranes. Biophys J, 13(3): p. 245–64.

    PubMed  CAS  Google Scholar 

  41. Dong, C., Skalak, R., Sung, K.L., Schmid-Schonbein, G.W., and Chien, S. (1988) Passive deformation analysis of human leukocytes. J Biomech Eng, 110(1): p. 27–36.

    PubMed  CAS  Google Scholar 

  42. Heilbrunn, L.V. (1920) The physical effect of anesthetics upon living protoplasm. Biological Bulletin, 39(6): p. 307–315.

    Google Scholar 

  43. Chien, S., Usami, S., and Bertles, J.F. (1970) Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest, 49(4): p. 623–34.

    PubMed  CAS  Google Scholar 

  44. Costa, K.D. (2003) Single-cell elastography: probing for disease with the atomic force microscope. Dis Markers, 19(2-3): p. 139–54.

    PubMed  Google Scholar 

  45. Rosenbluth, M.J., Lam, W.A., and Fletcher, D.A. (2008) Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip, 8(7): p. 1062–70.

    PubMed  CAS  Google Scholar 

  46. Bao, N., Zhan, Y., and Lu, C. (2008) Microfluidic electroporative flow cytometry for studying single-cell biomechanics. Anal Chem, 80(20): p. 7714–9.

    PubMed  CAS  Google Scholar 

  47. Discher, D.E., Mooney, D.J., and Zandstra, P.W. (2009) Growth factors, matrices, and forces combine and control stem cells. Science, 324(5935): p. 1673–7.

    PubMed  CAS  Google Scholar 

  48. Janmey, P.A., Winer, J.P., Murray, M.E., and Wen, Q. (2009) The hard life of soft cells. Cell Motil Cytoskeleton, 66(8): p. 597–605.

    PubMed  Google Scholar 

  49. Zaman, M.H., Trapani, L.M., Sieminski, A.L., Mackellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A., and Matsudaira, P. (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A, 103(29): p. 10889–94.

    PubMed  CAS  Google Scholar 

  50. Engler, A.J., Griffin, M.A., Sen, S., Bonnemann, C.G., Sweeney, H.L., and Discher, D.E. (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol, 166(6): p. 877–87.

    PubMed  CAS  Google Scholar 

  51. Na, S., Sun, Z., Meininger, G.A., and Humphrey, J.D. (2004) On atomic force microscopy and the constitutive behavior of living cells. Biomech Model Mechanobiol, 3(2): p. 75–84.

    PubMed  CAS  Google Scholar 

  52. Ni, Y. and Chiang, M.Y.M. (2007) Prediction of elastic properties of heterogeneous materials with complex microstructures. J Mech Phys Solids, 55(3): p. 517–532.

    CAS  Google Scholar 

  53. Guilak, F., Tedrow, J.R., and Burgkart, R. (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun, 269(3): p. 781–6.

    PubMed  CAS  Google Scholar 

  54. Lammerding, J., Schulze, P.C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R.D., Stewart, C.L., and Lee, R.T. (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest, 113(3): p. 370–8.

    PubMed  CAS  Google Scholar 

  55. Berdyyeva, T.K., Woodworth, C.D., and Sokolov, I. (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol, 50(1): p. 81–92.

    PubMed  Google Scholar 

  56. Broers, J.L.V., Peeters, E.A.G., Kuijpers, H.J.H., Endert, J., Bouten, C.V.C., Oomens, C.W.J., Baaijens, F.P.T., and Ramaekers, F.C.S. (2004) Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet., 13(21): p. 2567–2580.

    PubMed  CAS  Google Scholar 

  57. Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E., and Truskey, G.A. (2001) Endothelial, cardiac muscle and skeletal ­muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech, 34(12): p. 1545–53.

    PubMed  CAS  Google Scholar 

  58. Ricci, D., Tedesco, M., and Grattarola, M. (1997) Mechanical and morphological ­properties of living 3 T6 cells probed via ­scanning force microscopy. Microsc Res Tech, 36(3): p. 165–71.

    PubMed  CAS  Google Scholar 

  59. Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R., and Navajas, D. (2008) Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear ­volume in G1 and proliferation. Biophys J, 94(12): p. 4984–95.

    PubMed  CAS  Google Scholar 

  60. Azeloglu, E.U., Bhattacharya, J., and Costa, K.D. (2008) Atomic force microscope ­elastography reveals phenotypic differences in ­alveolar cell stiffness. J Appl Physiol, 105(2): p. 652–61.

    PubMed  Google Scholar 

  61. Darling, E.M., Topel, M., Zauscher, S., Vail, T.P., and Guilak, F. (2007) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech.

    Google Scholar 

  62. A-Hassan, E., Heinz, W.F., Antonik, M.D., D’Costa, N.P., Nageswaran, S., Schoenenberger, C.A., and Hoh, J.H. (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J, 74(3): p. 1564–78.

    PubMed  CAS  Google Scholar 

  63. Costa, K.D., Sim, A.J., and Yin, F.C. (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng, 128(2): p. 176–84.

    PubMed  Google Scholar 

  64. Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., and Sambongi, T. (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy, 82(1-4): p. 253–8.

    PubMed  CAS  Google Scholar 

  65. Laurent, V.M., Kasas, S., Yersin, A., Schaffer, T.E., Catsicas, S., Dietler, G., Verkhovsky, A.B., and Meister, J.J. (2005) Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophys J, 89(1): p. 667–75.

    PubMed  CAS  Google Scholar 

  66. Nagayama, K., Nagano, Y., Sato, M., and Matsumoto, T. (2006) Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas. J Biomech, 39(2): p. 293-301.

    PubMed  Google Scholar 

  67. Park, S., Koch, D., Cardenas, R., Kas, J., and Shih, C.K. (2005) Cell motility and local ­viscoelasticity of fibroblasts. Biophys J, 89(6): p. 4330–42.

    PubMed  CAS  Google Scholar 

  68. Smith, B.A., Tolloczko, B., Martin, J.G., and Grutter, P. (2005) Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J, 88(4): p. 2994–3007.

    PubMed  CAS  Google Scholar 

  69. Trepat, X., Grabulosa, M., Buscemi, L., Rico, F., Farre, R., and Navajas, D. (2005) Thrombin and histamine induce stiffening of alveolar epithelial cells. J Appl Physiol, 98(4): p. 1567–74.

    PubMed  CAS  Google Scholar 

  70. Wakatsuki, T., Schwab, B., Thompson, N.C., and Elson, E.L. (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci, 114(Pt 5): p. 1025–36.

    PubMed  CAS  Google Scholar 

  71. Wu, H.W., Kuhn, T., and Moy, V.T. (1998) Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning, 20(5): p. 389–97.

    PubMed  CAS  Google Scholar 

  72. Nishimura, S., Nagai, S., Katoh, M., Yamashita, H., Saeki, Y., Okada, J., Hisada, T., Nagai, R., and Sugiura, S. (2006) Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ Res, 98(1): p. 81–7.

    PubMed  CAS  Google Scholar 

  73. Tsutsui, H., Ishihara, K., and Cooper, G.t. (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science, 260(5108): p. 682–7.

    Google Scholar 

  74. Hu, S., Chen, J., and Wang, N. (2004) Cell spreading controls balance of prestress by microtubules and extracellular matrix. Front Biosci, 9: p. 2177–82.

    PubMed  CAS  Google Scholar 

  75. Shah, S.B., Davis, J., Weisleder, N., Kostavassili, I., McCulloch, A.D., Ralston, E., Capetanaki, Y., and Lieber, R.L. (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J, 86(5): p. 2993–3008.

    PubMed  CAS  Google Scholar 

  76. Deng, L., Fairbank, N.J., Fabry, B., Smith, P.G., and Maksym, G.N. (2004) Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am J Physiol Cell Physiol, 287(2): p. C440–8.

    PubMed  CAS  Google Scholar 

  77. Yourek, G., Hussain, M.A., and Mao, J.J. (2007) Cytoskeletal changes of mesenchymal stem cells during differentiation. Asaio J, 53(2): p. 219–28.

    PubMed  Google Scholar 

  78. Stamenovic, D., Mijailovich, S.M., Tolic-Norrelykke, I.M., Chen, J., and Wang, N. (2002) Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol, 282(3): p. C617–24.

    PubMed  CAS  Google Scholar 

  79. Helmke, B.P., Goldman, R.D., and Davies, P.F. (2000) Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res, 86(7): p. 745–52.

    PubMed  CAS  Google Scholar 

  80. Martens, J.C. and Radmacher, M. (2008) Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch, 456(1): p. 95–100.

    PubMed  CAS  Google Scholar 

  81. Schafer, A. and Radmacher, M. (2005) Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater, 1(3): p. 273–80.

    PubMed  Google Scholar 

  82. Heidemann, S.R., Lamoureaux, P., and Buxbaum, R.E. (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol, 89(4): p. 1670–1678.

    PubMed  CAS  Google Scholar 

  83. Ingber, D.E. (2000) Opposing views on ­tensegrity as a structural framework for understanding­ cell mechanics. J Appl Physiol, 89(4): p. 1663–70.

    PubMed  CAS  Google Scholar 

  84. Hu, S., Chen, J., Fabry, B., Numaguchi, Y., Gouldstone, A., Ingber, D.E., Fredberg, J.J., Butler, J.P., and Wang, N. (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol, 285(5): p. C1082–90.

    PubMed  CAS  Google Scholar 

  85. Radmacher, M., Tillamnn, R.W., Fritz, M., and Gaub, H.E. (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science, 257(5078): p. 1900–5.

    PubMed  CAS  Google Scholar 

  86. Solon, J., Levental, I., Sengupta, K., Georges, P.C., and Janmey, P.A. (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J, 93(12): p. 4453–61.

    PubMed  CAS  Google Scholar 

  87. Guilak, F., Ting-Beall, H.P., Baer, A.E., Trickey, W.R., Erickson, G.R., and Setton, L.A. (1999) Viscoelastic properties of intervertebral disc cells. Identification of two biomechanically distinct cell populations. Spine, 24(23): p. 2475–83.

    PubMed  CAS  Google Scholar 

  88. Hubmayr, R.D., Shore, S.A., Fredberg, J.J., Planus, E., Panettieri, R.A., Jr., Moller, W., Heyder, J., and Wang, N. (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Physiol, 271(5 Pt 1): p. C1660–8.

    PubMed  CAS  Google Scholar 

  89. Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., and Kas, J. (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J, 81(2): p. 767–84.

    PubMed  CAS  Google Scholar 

  90. Shieh, A.C. and Athanasiou, K.A. (2006) Biomechanics of single zonal chondrocytes. J Biomech, 39(9): p. 1595–602.

    PubMed  Google Scholar 

  91. Peeters, E.A., Oomens, C.W., Bouten, C.V., Bader, D.L., and Baaijens, F.P. (2005) Mechanical and failure properties of single attached cells under compression. J Biomech, 38(8): p. 1685–93.

    PubMed  CAS  Google Scholar 

  92. Goldmann, W.H., Galneder, R., Ludwig, M., Kromm, A., and Ezzell, R.M. (1998) Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy. FEBS Lett, 424(3): p. 139–42.

    PubMed  CAS  Google Scholar 

  93. Yamada, S., Wirtz, D., and Kuo, S.C. (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J, 78(4): p. 1736–47.

    PubMed  CAS  Google Scholar 

  94. Puig-De-Morales, M., Grabulosa, M., Alcaraz, J., Mullol, J., Maksym, G.N., Fredberg, J.J., and Navajas, D. (2001) Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol, 91(3): p. 1152–9.

    PubMed  CAS  Google Scholar 

  95. Canetta, E., Duperray, A., Leyrat, A., and Verdier, C. (2005) Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions. Biorheology, 42(5): p. 321–33.

    PubMed  CAS  Google Scholar 

  96. Thoumine, O. and Ott, A. (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci, 110 (Pt 17): p. 2109–16.

    PubMed  CAS  Google Scholar 

  97. Costa, K.D. (2006) Imaging and probing cell mechanical properties with the atomic force microscope. Methods Mol Biol, 319: p. 331–61.

    PubMed  Google Scholar 

  98. Binnig, G., Quate, C.F., and Gerber, C. (1986) Atomic force microscope. Phys Rev Lett, 56(9): p. 930–933.

    PubMed  Google Scholar 

  99. Stark, R.W., Drobek, T., and Heckl, W.M. (2001) Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. Ultramicroscopy, 86(1-2): p. 207–15.

    PubMed  CAS  Google Scholar 

  100. Butt, H.J., Cappella, B., and Kappl, M. (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep, 59(1-6): p. 1–152.

    CAS  Google Scholar 

  101. Gratz, A.J., Manne, S., and Hansma, P.K. (1991) Atomic force microscopy of atomic-scale ledges and etch pits formed during ­dissolution of quartz. Science, 251(4999): p. 1343–1346.

    PubMed  CAS  Google Scholar 

  102. Hoh, J.H. and Schoenenberger, C.A. (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci, 107 (Pt 5): p. 1105–14.

    PubMed  Google Scholar 

  103. Moreno-Herrero, F., Colchero, J., Gomez-Herrero, J., and Baro, A.M. (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E Stat Nonlin Soft Matter Phys, 69(3 Pt 1): p. 031915.

    Google Scholar 

  104. Nag, K., Munro, J.G., Hearn, S.A., Rasmusson, J., Petersen, N.O., and Possmayer, F. (1999) Correlated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant. J Struct Biol, 126(1): p. 1–15.

    PubMed  CAS  Google Scholar 

  105. Davis, J.J., Hill, H.A.O., and Powell, T. (2001) High resolution scanning force microscopy of cardiac myocytes. Cell Biology International, 25(12): p. 1271–1277.

    PubMed  CAS  Google Scholar 

  106. Moloney, M., McDonnell, L., and O’Shea, H. (2004) Atomic force microscopy analysis of enveloped and non-enveloped viral entry into, and egress from, cultured cells. Ultramicroscopy, 100(3-4): p. 163–9.

    PubMed  CAS  Google Scholar 

  107. Park, S., Costa, K.D., and Ateshian, G.A. (2004) Microscale frictional response of bovine articular cartilage from atomic force microscopy. J Biomech, 37(11): p. 1679–87.

    PubMed  Google Scholar 

  108. Soboyejo, W.O., Nemetski, B., Allameh, S., Marcantonio, N., Mercer, C., and Ricci, J. (2002) Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res, 62(1): p. 56–72.

    PubMed  CAS  Google Scholar 

  109. Vie, V., Giocondi, M.C., Lesniewska, E., Finot, E., Goudonnet, J.P., and Le Grimellec, C. (2000) Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. Ultramicroscopy, 82(1-4): p. 279-88.

    PubMed  CAS  Google Scholar 

  110. de Pablo, P.J., Colchero, J., Gomez-Herrero, J., and Baro, A.M. (1998) Jumping mode scanning force microscopy. Applied Physics Letters, 73(22): p. 3300–3302.

    Google Scholar 

  111. Nagao, E. and Dvorak, J.A. (1999) Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells. Biophys J, 76(6): p. 3289–97.

    PubMed  CAS  Google Scholar 

  112. Schaus, S.S. and Henderson, E.R. (1997) Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys J, 73(3): p. 1205–14.

    PubMed  CAS  Google Scholar 

  113. Hertz, H. (1881) Über die Berührung fester elastischer Körper (On the contact of elastic solids). J. Reine Angew. Mathematik, 92: p. 156–171.

    Google Scholar 

  114. Love, A.E.H. (1939) Boussinesq’s problem for a rigid cone. Q. J. Math., 10: p. 161–175.

    Google Scholar 

  115. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., and Chadwick, R.S. (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J, 82(5): p. 2798–810.

    PubMed  CAS  Google Scholar 

  116. Radmacher, M. (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol, 68: p. 67–90.

    PubMed  Google Scholar 

  117. Heinz, W.F., Antonik, M.D., and Hoh, J.H. (2000) Reconstructing local interaction potentials from perturbations to the thermally driven motion of an atomic force microscope cantilever. J Phys Chem B, 104(3): p. 622–626.

    CAS  Google Scholar 

  118. Rotsch, C., Jacobson, K., and Radmacher, M. (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci U S A, 96(3): p. 921–6.

    PubMed  CAS  Google Scholar 

  119. Johnson, K.L. (1970) The correlation of indentation experiments. J Mech Phys Solids, 18(2): p. 115–126.

    Google Scholar 

  120. Costa, K.D. and Yin, F.C. (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng, 121(5): p. 462–71.

    PubMed  CAS  Google Scholar 

  121. Briscoe, B.J., Sebastian, K.S., and Adams, M.J. (1994) The effect of indenter geometry on the elastic response to indentation. J Phys D: Appl Phys, 27(6): p. 1156–1162.

    CAS  Google Scholar 

  122. Zhao, R., Wyss, K., and Simmons, C.A. (2009) Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J Biomech, 42(16): p. 2768–2773.

    PubMed  Google Scholar 

  123. Darling, E.M., Zauscher, S., and Guilak, F. (2006) Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage, 14(6): p. 571–9.

    PubMed  CAS  Google Scholar 

  124. Lulevich, V., Zink, T., Chen, H.Y., Liu, F.T., and Liu, G.Y. (2006) Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir, 22(19): p. 8151–5.

    PubMed  CAS  Google Scholar 

  125. Emerson, R.J.t. and Camesano, T.A. (2006) On the importance of precise calibration techniques for an atomic force microscope. Ultramicroscopy, 106(4-5): p. 413–22.

    Google Scholar 

  126. Butt, H.J. and Jaschke, M. (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1): p. 1–7.

    Google Scholar 

  127. Cleveland, J.P., Manne, S., Bocek, D., and Hansma, P.K. (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum, 64(2): p. 403–405.

    CAS  Google Scholar 

  128. Sader, J.E. (1995) Parallel beam approxi­mation for V-shaped atomic force microscope ­cantilevers. Rev Sci Instrum, 66(9): p. 4583–4587.

    CAS  Google Scholar 

  129. Senden, T.J. and Ducker, W.A. (1994) Experimental determination of spring constants in atomic force microscopy. Langmuir, 10(4): p. 1003-1004.

    Google Scholar 

  130. Mahaffy, R.E., Park, S., Gerde, E., Kas, J., and Shih, C.K. (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J, 86(3): p. 1777–93.

    PubMed  CAS  Google Scholar 

  131. Rosenbluth, M.J., Lam, W.A., and Fletcher, D.A. (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J, 90(8): p. 2994–3003.

    PubMed  CAS  Google Scholar 

  132. Brandão, M.M., Fontes, A., Barjas-Castro, M.L., Barbosa, L.C., Costa, F.F., Cesar, C.L., and Saad, S.T. (2003) Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur J Haematol, 70(4): p. 207–11.

    PubMed  Google Scholar 

  133. Nash, G.B., Johnson, C.S., and Meiselman, H.J. (1984) Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. Blood, 63(1): p. 73–82.

    PubMed  CAS  Google Scholar 

  134. Ballas, S.K., Dover, G.J., and Charache, S. (1989) Effect of hydroxyurea on the rheological properties of sickle erythrocytes in vivo. Am J Hematol, 32(2): p. 104–11.

    PubMed  CAS  Google Scholar 

  135. Lam, W.A., Rosenbluth, M.J., and Fletcher, D.A. (2007) Chemotherapy exposure increases leukemia cell stiffness. Blood, 109(8): p. 3505–8.

    PubMed  CAS  Google Scholar 

  136. Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater, 3(4): p. 413–38.

    PubMed  Google Scholar 

  137. Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H.M., Ananthakrishnan, R., Mitchell, D., Kas, J., Ulvick, S., and Bilby, C. (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J, 88(5): p. 3689–98.

    PubMed  CAS  Google Scholar 

  138. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A.Z. (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J, 28(4): p. 312–6.

    PubMed  CAS  Google Scholar 

  139. Li, Q.S., Lee, G.Y., Ong, C.N., and Lim, C.T. (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun, 374(4): p. 609–13.

    PubMed  CAS  Google Scholar 

  140. Iyer, S., Gaikwad, R.M., Subba-Rao, V., Woodworth, C.D., and Sokolov, I. (2009) Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol, 4(6): p. 389–93.

    PubMed  CAS  Google Scholar 

  141. Faria, E.C., Ma, N., Gazi, E., Gardner, P., Brown, M., Clarke, N.W., and Snook, R.D. (2008) Measurement of elastic properties of prostate cancer cells using AFM. Analyst, 133(11): p. 1498–500.

    PubMed  CAS  Google Scholar 

  142. Cross, S.E., Jin, Y.S., Rao, J., and Gimzewski, J.K. (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol, 2(12): p. 780–3.

    PubMed  CAS  Google Scholar 

  143. Lekka, M., Fornal, M., Pyka-Fosciak, G., Lebed, K., Wizner, B., Grodzicki, T., and Styczen, J. (2005) Erythrocyte stiffness probed using atomic force microscope. Biorheology, 42(4): p. 307–17.

    PubMed  Google Scholar 

  144. Guilak, F. (2000) The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology, 37(1-2): p. 27–44.

    PubMed  CAS  Google Scholar 

  145. Zhang, Q.Y., Wang, X.H., Wei, X.C., and Chen, W.Y. (2008) Characterization of ­viscoelastic properties of normal and osteoarthritic chondrocytes in experimental rabbit model. Osteoarthritis Cartilage, 16(7): p. 837–40.

    PubMed  CAS  Google Scholar 

  146. Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., and Seufferlein, T. (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater, 1(1): p. 15–30.

    PubMed  CAS  Google Scholar 

  147. Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R.Z., Kay, M.S., and Rousso, I. (2007) A stiffness switch in human immunodeficiency virus. Biophys J, 92(5): p. 1777-83.

    PubMed  CAS  Google Scholar 

  148. Zile, M.R., Richardson, K., Cowles, M.K., Buckley, J.M., Koide, M., Cowles, B.A., Gharpuray, V., and Cooper, G., IV (1998) Constitutive properties of adult mammalian cardiac muscle cells. Circulation, 98(6): p. 567–579.

    PubMed  CAS  Google Scholar 

  149. Lieber, S.C., Aubry, N., Pain, J., Diaz, G., Kim, S.-J., and Vatner, S.F. (2004) Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol Heart Circ Physiol, 287(2): p. H645–651.

    PubMed  CAS  Google Scholar 

  150. Sokolov, I., Iyer, S., and Woodworth, C.D. (2006) Recovery of elasticity of aged human epithelial cells in vitro. Nanomedicine, 2(1): p. 31–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge a NSF CAREER Award (KDC; BES-0239138) and a fellowship from the Stony Wold-Herbert Fund (EUA) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Azeloglu, E.U., Costa, K.D. (2011). Atomic Force Microscopy in Mechanobiology: Measuring Microelastic Heterogeneity of Living Cells. In: Braga, P., Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research. Methods in Molecular Biology, vol 736. Humana Press. https://doi.org/10.1007/978-1-61779-105-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-105-5_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-104-8

  • Online ISBN: 978-1-61779-105-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics