Skip to main content

Clustering Change Patterns Using Fourier Transformation with Time-Course Gene Expression Data

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

Abstract

To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a period of time because biologically related gene groups can share the same change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. This work is aimed at discovering gene groups with similar change patterns which share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. We applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T. G., Gabrielian, A. E., Landsman, D., Lockhart, D. J. and Davi, R. W. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73.

    Google Scholar 

  2. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccaromyces cerevisiae by microarray hybridization. Mol. Biology of the Cell 9, 3273–3297.

    Google Scholar 

  3. Serban, N. and Wasserman, L. (2005) CATS: Clustering after transformation and smoothing. J. Amer. Statist. Assoc. 471, 990–999.

    Google Scholar 

  4. Ernst, J., Nau, G. J. and Bar-Joseph, Z. (2005) Clustering short time series gene expression data. Bioinformatics 21, 195–168.

    Google Scholar 

  5. Li, J. and Wong, L. (2002) Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18, 725–34.

    Google Scholar 

  6. Park, T., Yi, S. G., Lee, S., Lee, S. Y., Yoo, D., Ahn, J., and Lee, Y. (2003) Statistical tests for identifying differentially expressed gene in time-course microarray experiments. Bioinformatics 19, 694–703.

    Google Scholar 

  7. Lai, Y., Wu, B., Chen, L. and Zhao, H. (2004) A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 20, 3146–55.

    Google Scholar 

  8. Zhang, L., Zhang, A. and Ramanathan, M. (2003) Fourier harmonic approach for visualizing temporal patterns of gene expression data. Proc. IEEE Comp. Sys. Bioinformatics Conf. 2, 137–147.

    Google Scholar 

  9. Murthy, K. R. K. and Hua, L. J. (2004) Improved Fourier transform method for unsupervised cell-cycle regulated gene prediction. Proc. IEEE Comp. Sys. Bioinformatics Conf. 194–203.

    Google Scholar 

  10. Kim, B., Littell, R. C. and Wu, R. (2006) Clustering periodic patterns of gene expression based on Fourier approximations. Current Genomics 7, 197–203.

    Google Scholar 

  11. Kim, J. and Kim, H. (2008) Clustering of change patterns using Fourier coefficients. Bioinformatics 24, 184–191.

    Google Scholar 

  12. Peddada,S., Lobenhofer, E., Li L., Afshari C., Weinberg C. and Umbach D. M. (2003) Gene selection and clustering for time-course and dose response microarray experiments using order-restricted inference. Bioinformatics 19, 834–841.

    Google Scholar 

  13. Johansson, D., Lindgren, P., Berglund, A., (2003) A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19, 467–473.

    Google Scholar 

  14. Schliep, A., Schōnhuth, A., Steinhoff, C., (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19 (Suppl.), i255-i263.

    Google Scholar 

  15. Luan and Li (2003) Clustering of time-course gene expression data using a mixed-effects models with B-splines. Bioinformatics 19, 474–482.

    Google Scholar 

  16. Song J. J., Lee, H. J., Morris, J. S. and Kang, S. (2007) Clustering of time-course gene expression data using functional data analysis. Comp. Biol. and Chem. 31, 4, 265–274.

    Google Scholar 

  17. Bar-Joseph, Z. (2004) Analyzing time series gene expression data. Bioinformatics 20, 2493–2503.

    Google Scholar 

  18. Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001) Model based clustering and data transformations for gene expression data. Bioinformatics 17, 977–998.

    Google Scholar 

  19. Murtage, C. and Raftery, A. E. (1984) Fitting straight lines to point patterns. Pattern Recognition 17, 479–483.

    Google Scholar 

  20. Fraley, C. and Raftery, A. E. (2002) Model-based clustering, discriminant analysis and Density Estimation. J. Amer. Statist. Assoc. 97, 611–631.

    Google Scholar 

  21. Tolstov, G. P. (1962) Fourier analysis. McGraw-Hill, New York.

    Google Scholar 

  22. Stein, E. M. and Shakarchi, R. (2003) Fourier analysis. Princeton University Press, Princeton.

    Google Scholar 

  23. Lestrel, P. E. (1997) Fourier descriptors and their applications in biology. Cambridge University Press, London.

    Google Scholar 

  24. Eubank, R. and Hart, J. D. (1992) Testing goodness-of-fit via order selection criteria. Ann. Stat. 20, 3, 1412–1425.

    Google Scholar 

  25. Simon, R. M., Korn, E. L., McShane, L. M., Radmacher, M. D., Wright, G. W. and Zhao, Y. (2003) Design and analysis of DNA microarray investigations. Springer, New York.

    Google Scholar 

  26. Yeung, K. Y. and Ruzzo,W. L. (2001) An empirical study on principal component analysis for clustering gene expression data. Bioinformatics 17, 763–774.

    Google Scholar 

  27. Banfield, J. D., and Raftery, A. E. (1993) Model-based Gaussian and non-Gaussian clustering Biometrics 49, 803–821.

    Google Scholar 

  28. Beran, R. and Dumbgen, L. (1998) Modulation of estimators and confidence Sets. Ann. Stat. 26, 1826–1856.

    Google Scholar 

  29. Fraley, C. and Raftery, A.E. (1999) MCLUST: software for Model-based cluster analysis. J. Classif. 16, 297–306.

    Google Scholar 

  30. Freedman, D. and Lane, D. (1980) The Empirical distribution of Fourier coefficients. Ann. Stat. 8, 1244–1251.

    Google Scholar 

  31. Rousseeuw, P. J. (1987) Silhouettes: graphical aid to the interpretation and validation of cluster analysis. J. Comp. and Appl. Math 20, 53–65.

    Google Scholar 

  32. Kaufman, L. and Rousseeuw, P. J. (1990) Finding groups in data: An introduction to cluster analysis. Wiley, New York.

    Google Scholar 

  33. Ajuaje, F. (2002) A cluster validity framework for genome expression data. Biometrics 18, 319–320.

    Google Scholar 

  34. Beissbarth, T. and Speed, T. P. (2004) GOstat: Find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 6, 20(9), 1464–1465.

    Google Scholar 

  35. MacQueen, J. B. (1967) Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley. University of California Press, 1, 281–297.

    Google Scholar 

  36. Rowen, D. W., Meinke, M. and LaPorte, D. C. (1992) GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol. Cell. Biol. Jan;12(1), 22–29.

    Google Scholar 

  37. Haselbeck, R. J. and McAlister-Henn, L. (1993) Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem. 268(16), 12116–12122.

    Google Scholar 

  38. Valenzuela, L., Ballario, P., Aranda, C., Filetici, P. and A. Gonzalez, A. (1998) Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J. Bacteriol. 180(14), 3533–3540.

    Google Scholar 

  39. Jauniaux, J. C., Urrestarazu, L. A., and Wiame, J. M. (1978) Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J. Bacteriol. 133(3), 1096–1107.

    Google Scholar 

  40. Crabeel, M., Seneca, S., Devos, K. and Glansdorff, N. (1988) Arginine repression of the Saccharomyces cerevisiae ARG1 gene comparison of the ARG1 and ARG3 control regions. Curr. Gen. 3(2), 113–124.

    Google Scholar 

  41. Masselot M. and De Robichon-Szulmajster, H. (1975) Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol. Gen. Genet. 139(2):121–132.

    Google Scholar 

  42. Thomas, D. and Surdin-Kerjan, Y. (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61(4), 503–532.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Carroll for giving motivation and Haseong Kim for providing gene ontology results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, J. (2011). Clustering Change Patterns Using Fourier Transformation with Time-Course Gene Expression Data. In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics