Skip to main content

Experimental Validation of MicroRNA Targets Using a Luciferase Reporter System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 732))

Abstract

MicroRNAs (miRNAs) are a class of small noncoding transcripts that repress gene expression by pairing with their target messenger RNAs (mRNAs). The human genome codes for hundreds of different miRNAs and it is predicted that they target thousands of mRNAs involved in a wide variety of physiological processes such as development and cell identity. In animals, the identification of mRNA targets is complex because most miRNAs and their target mRNAs do not have exact or nearly exact complementarity. This tendency of animal miRNAs to bind their mRNA targets with imperfect sequence homology represents a considerable challenge to identifying miRNA targets. Computational algorithms based on conservation and experimental approaches based on expression profiles are flooding the literature with lists of candidate genes containing a large number of false-positive and false-negative predictions and indirect targets that cover the real list of direct targets for each miRNA. Currently, the only available tools to validate a sequence as a direct target of an miRNA are the systems based on a reporter gene carrying the candidate sequence. Here, an miRNA target validation reporter gene system based on the luminescence generated by the luciferase protein is described in detail, including the design of the reporter constructs, its expression in a model cell line and its measurement using a luciferase assay.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  2. Bartel, B., and Bartel, D. P. (2003). MicroRNAs: at the root of plant development? Plant Physiol 132, 709–717.

    Article  PubMed  CAS  Google Scholar 

  3. Basyuk, E., Suavet, F., Doglio, A., Bordonne, R., and Bertrand, E. (2003). Human let-7 stem–loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 31, 6593–6597.

    Article  PubMed  CAS  Google Scholar 

  4. Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356–363.

    Article  PubMed  CAS  Google Scholar 

  5. Kloosterman, W. P., and Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Dev Cell 11, 441–450.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663–4670.

    Article  PubMed  CAS  Google Scholar 

  7. Zeng, Y., and Cullen, B. R. (2003). Sequence requirements for microRNA processing and function in human cells. RNA 9, 112–123.

    Article  PubMed  CAS  Google Scholar 

  8. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  PubMed  CAS  Google Scholar 

  9. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011–3016.

    Article  PubMed  CAS  Google Scholar 

  10. Grishok, A., and Sharp, P. A. (2005). Negative regulation of nuclear divisions in Caenorhabditis elegans by retinoblastoma and RNA interference-related genes. Proc Natl Acad Sci U S A 102, 17360–17365.

    Article  PubMed  CAS  Google Scholar 

  11. Hutvagner, G., and Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  12. Leuschner, P. J., Ameres, S. L., Kueng, S., and Martinez, J. (2006). Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7, 314–320.

    Article  PubMed  CAS  Google Scholar 

  13. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., and Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620.

    Article  PubMed  CAS  Google Scholar 

  14. Rand, T. A., Petersen, S., Du, F., and Wang, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629.

    Article  PubMed  CAS  Google Scholar 

  15. Bagga, S., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563.

    Article  PubMed  CAS  Google Scholar 

  16. Eulalio, A., Huntzinger, E., and Izaurralde, E. (2008). GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15, 346–353.

    Article  PubMed  CAS  Google Scholar 

  17. Parker, J. S., Roe, S. M., and Barford, D. (2006). Molecular mechanism of target RNA transcript recognition by Argonaute-guide complexes. Cold Spring Harb Symp Quant Biol 71, 45–50.

    Article  PubMed  CAS  Google Scholar 

  18. Petersen, C. P., Bordeleau, M. E., Pelletier, J., and Sharp, P. A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21, 533–542.

    Article  PubMed  CAS  Google Scholar 

  19. Pillai, R. S., et al. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  20. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.

    Article  PubMed  CAS  Google Scholar 

  21. Davis, E., et al. (2005). RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15, 743–749.

    Article  PubMed  CAS  Google Scholar 

  22. Yekta, S., Shih, I. H., and Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.

    Article  PubMed  CAS  Google Scholar 

  23. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003). Vertebrate microRNA genes. Science 299, 1540.

    Article  PubMed  CAS  Google Scholar 

  24. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature 455, 64–71.

    Article  PubMed  CAS  Google Scholar 

  25. Sethupathy, P., Megraw, M., and Hatzigeorgiou, A. G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3, 881–886.

    Article  PubMed  CAS  Google Scholar 

  26. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  27. Lim, L. P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

    Article  PubMed  CAS  Google Scholar 

  28. Elmen, J., et al. (2008). Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36, 1153–1162.

    Article  PubMed  CAS  Google Scholar 

  29. Nicolas, F. E., et al. (2008). Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 14, 2513–2520.

    Article  PubMed  CAS  Google Scholar 

  30. Beitzinger, M., Peters, L., Zhu, J. Y., Kremmer, E., and Meister, G. (2007). Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4, 76–84.

    Article  PubMed  CAS  Google Scholar 

  31. Karginov, F. V., et al. (2007). A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 104, 19291–19296.

    Article  PubMed  CAS  Google Scholar 

  32. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63.

    Article  PubMed  CAS  Google Scholar 

  33. Vinther, J., Hedegaard, M. M., Gardner, P. P., Andersen, J. S., and Arctander, P. (2006). Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34, e107.

    Article  PubMed  Google Scholar 

  34. Brennecke, J., Stark, A., Russell, R. B., and Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biol 3, e85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundación Séneca (Murcia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco E. Nicolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Nicolas, F.E. (2011). Experimental Validation of MicroRNA Targets Using a Luciferase Reporter System. In: Dalmay, T. (eds) MicroRNAs in Development. Methods in Molecular Biology, vol 732. Humana Press. https://doi.org/10.1007/978-1-61779-083-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-083-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-082-9

  • Online ISBN: 978-1-61779-083-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics