Skip to main content

Viral miRNAs

  • Protocol
  • First Online:
Antiviral RNAi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 721))

Abstract

Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109–D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3′-untranslated regions (3′UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350–355, 2004; Cell 116:281–297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91–105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682–686, 2005; J Virol 79:13094–13104, 2005; Virology 383:183–187, 2009; J Virol 82:9823–9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  2. Ruvkun, G., Wightman, B., and Ha, I. (2004) The 20 years it took to recognize the importance of tiny RNAs, Cell 116, S93–S96, 92 p following S96.

    Google Scholar 

  3. Wightman, B., Burglin, T. R., Gatto, J., Arasu, P., and Ruvkun, G. (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development, Genes Dev 5, 1813–1824.

    Article  PubMed  CAS  Google Scholar 

  4. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell 75, 855–862.

    Article  PubMed  CAS  Google Scholar 

  5. Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA, Nature 408, 86–89.

    Article  PubMed  CAS  Google Scholar 

  6. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 403, 901–906.

    Article  PubMed  CAS  Google Scholar 

  7. Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor, Mol Cell 5, 659–669.

    Article  PubMed  CAS  Google Scholar 

  8. Ambros, V. (2004) The functions of animal microRNAs, Nature 431, 350–355.

    Article  PubMed  CAS  Google Scholar 

  9. Griffiths-Jones, S. (2004) The microRNA Registry, Nucleic Acids Res 32, D109–D111.

    Article  PubMed  CAS  Google Scholar 

  10. Li, H., Li, W. X., and Ding, S. W. (2002) Induction and suppression of RNA silencing by an animal virus, Science 296, 1319–1321.

    Article  PubMed  CAS  Google Scholar 

  11. Lippman, Z., and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing, Nature 431, 364–370.

    Article  PubMed  CAS  Google Scholar 

  12. Iorio, M. V., Piovan, C., and Croce, C. M. (2010) Interplay between microRNAs and the epigenetic machinery: An intricate network, Biochimica et biophysica acta 1799, 694–701.

    Google Scholar 

  13. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  14. Calin, G. A., and Croce, C. M. (2006) MicroRNA signatures in human cancers, Nat Rev Cancer 6, 857–866.

    Article  PubMed  CAS  Google Scholar 

  15. Bogerd, H. P., Karnowski, H. W., Cai, X., Shin, J., Pohlers, M., and Cullen, B. R. (2010) A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs, Mol Cell 37, 135–142.

    Article  PubMed  CAS  Google Scholar 

  16. Diebel, K. W., Smith, A. L., and van Dyk, L. F. (2010) Mature and functional viral ­miRNAs transcribed from novel RNA polymerase III promoters, RNA 16, 170–185.

    Article  PubMed  CAS  Google Scholar 

  17. Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., and Bartel, D. P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol Cell 27, 91–105.

    Article  PubMed  CAS  Google Scholar 

  18. Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev 9, 102–114.

    CAS  Google Scholar 

  19. Yue, D., Liu, H., and Huang, Y. (2009) Survey of computational algorithms for MicroRNA target prediction, Curr Genomics 10, 478–492.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Prediction of mammalian microRNA targets, Cell 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  22. Burgler, C., and Macdonald, P. M. (2005) Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method, BMC Genomics 6, 88.

    Article  PubMed  Google Scholar 

  23. Saetrom, O., Snove, O., Jr., and Saetrom, P. (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms, RNA 11, 995–1003.

    Article  PubMed  CAS  Google Scholar 

  24. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004) Human MicroRNA targets, PLoS Biol 2, e363.

    Article  PubMed  Google Scholar 

  25. Dittmer, D. P. (2003) Transcription profile of Kaposi’s sarcoma-associated herpesvirus in primary Kaposi’s sarcoma lesions as determined by real-time PCR arrays, Cancer Res 63, 2010–2015.

    PubMed  CAS  Google Scholar 

  26. Dittmer, D. P., Gonzalez, C. M., Vahrson, W., DeWire, S. M., Hines-Boykin, R., and Damania, B. (2005) Whole-genome transcription profiling of rhesus monkey rhadinovirus, J Virol 79, 8637–8650.

    Article  PubMed  CAS  Google Scholar 

  27. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008) The impact of microRNAs on protein output, Nature 455, 64–71.

    Article  PubMed  CAS  Google Scholar 

  28. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs, Nature 455, 58–63.

    Article  PubMed  CAS  Google Scholar 

  29. Chi, S. W., Zang, J. B., Mele, A., and Darnell, R. B. (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps, Nature 460, 479–486.

    PubMed  CAS  Google Scholar 

  30. Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jr., Jungkamp, A. C., Munschauer, M., Ulrich, A., Wardle, G. S., Dewell, S., Zavolan, M., and Tuschl, T. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP, Cell 141, 129–141.

    Article  PubMed  CAS  Google Scholar 

  31. Dolken, L., Malterer, G., Erhard, F., Kothe, S., Friedel, C. C., Suffert, G., Marcinowski, L., Motsch, N., Barth, S., Beitzinger, M., Lieber, D., Bailer, S. M., Hoffmann, R., Ruzsics, Z., Kremmer, E., Pfeffer, S., Zimmer, R., Koszinowski, U. H., Grasser, F., Meister, G., and Haas, J. (2010) Systematic analysis of viral and cellular microRNA ­targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay, Cell Host Microbe 7, 324–334.

    Article  PubMed  Google Scholar 

  32. Monticelli, S., Ansel, K. M., Xiao, C., Socci, N. D., Krichevsky, A. M., Thai, T. H., Rajewsky, N., Marks, D. S., Sander, C., Rajewsky, K., Rao, A., and Kosik, K. S. (2005) MicroRNA profiling of the murine hematopoietic system, Genome Biol 6, R71.

    Article  PubMed  Google Scholar 

  33. Rodriguez, A., Vigorito, E., Clare, S., Warren, M. V., Couttet, P., Soond, D. R., van Dongen, S., Grocock, R. J., Das, P. P., Miska, E. A., Vetrie, D., Okkenhaug, K., Enright, A. J., Dougan, G., Turner, M., and Bradley, A. (2007) Requirement of bic/microRNA-155 for normal immune function, Science 316, 608–611.

    Article  PubMed  CAS  Google Scholar 

  34. Thai, T. H., Calado, D. P., Casola, S., Ansel, K. M., Xiao, C., Xue, Y., Murphy, A., Frendewey, D., Valenzuela, D., Kutok, J. L., Schmidt-Supprian, M., Rajewsky, N., Yancopoulos, G., Rao, A., and Rajewsky, K. (2007) Regulation of the germinal center response by microRNA-155, Science 316, 604–608.

    Article  PubMed  CAS  Google Scholar 

  35. Pfeffer, S., Zavolan, M., Grasser, F. A., Chien, M., Russo, J. J., Ju, J., John, B., Enright, A. J., Marks, D., Sander, C., and Tuschl, T. (2004) Identification of virus-encoded microRNAs, Science 304, 734–736.

    Article  PubMed  CAS  Google Scholar 

  36. Samols, M. A., Hu, J., Skalsky, R. L., and Renne, R. (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus, J Virol 79, 9301–9305.

    Article  PubMed  CAS  Google Scholar 

  37. Grundhoff, A., Sullivan, C. S., and Ganem, D. (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-­herpesviruses, RNA 12, 733–750.

    Article  PubMed  CAS  Google Scholar 

  38. Umbach, J. L., and Cullen, B. R. (2010) In-depth analysis of Kaposi’s sarcoma-­associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery, J Virol 84, 695–703.

    Article  PubMed  CAS  Google Scholar 

  39. Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., and Cullen, B. R. (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells, Proc Natl Acad Sci U S A 102, 5570–5575.

    Article  PubMed  CAS  Google Scholar 

  40. Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F. A., van Dyk, L. F., Ho, C. K., Shuman, S., Chien, M., Russo, J. J., Ju, J., Randall, G., Lindenbach, B. D., Rice, C. M., Simon, V., Ho, D. D., Zavolan, M., and Tuschl, T. (2005) Identification of microRNAs of the herpesvirus family, Nat Methods 2, 269–276.

    Article  PubMed  CAS  Google Scholar 

  41. Cai, X., Schafer, A., Lu, S., Bilello, J. P., Desrosiers, R. C., Edwards, R., Raab-Traub, N., and Cullen, B. R. (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed, PLoS Pathog 2, e23.

    Article  PubMed  Google Scholar 

  42. Zhu, J. Y., Pfuhl, T., Motsch, N., Barth, S., Nicholls, J., Grasser, F., and Meister, G. (2009) Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas, J Virol 83, 3333–3341.

    Article  PubMed  CAS  Google Scholar 

  43. Riley, K. J., Rabinowitz, G. S., and Steitz, J. A. (2010) Comprehensive analysis of Rhesus lymphocryptovirus microRNA expression, J Virol 84, 5148–5157.

    Article  PubMed  CAS  Google Scholar 

  44. Walz, N., Christalla, T., Tessmer, U., and Grundhoff, A. (2010) A global analysis of evolutionary conservation among known and predicted gammaherpesvirus microRNAs, J Virol 84, 716–728.

    Article  PubMed  CAS  Google Scholar 

  45. Schafer, A., Cai, X., Bilello, J. P., Desrosiers, R. C., and Cullen, B. R. (2007) Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus, Virology 364, 21–27.

    Article  PubMed  Google Scholar 

  46. Dunn, W., Trang, P., Zhong, Q., Yang, E., van Belle, C., and Liu, F. (2005) Human cytomegalovirus expresses novel microRNAs during productive viral infection, Cell Microbiol 7, 1684–1695.

    Article  PubMed  CAS  Google Scholar 

  47. Grey, F., Antoniewicz, A., Allen, E., Saugstad, J., McShea, A., Carrington, J. C., and Nelson, J. (2005) Identification and ­characterization of human cytomegalovirus-encoded microRNAs, J Virol 79, 12095–12099.

    Article  PubMed  CAS  Google Scholar 

  48. Cui, C., Griffiths, A., Li, G., Silva, L. M., Kramer, M. F., Gaasterland, T., Wang, X. J., and Coen, D. M. (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs, J Virol 80, 5499–5508.

    Article  PubMed  CAS  Google Scholar 

  49. Umbach, J. L., Nagel, M. A., Cohrs, R. J., Gilden, D. H., and Cullen, B. R. (2009) Analysis of human {alpha}-herpesvirus microRNA expression in latently infected human trigeminal ganglia, J Virol 79, 61626171.

    Google Scholar 

  50. Umbach, J. L., Wang, K., Tang, S., Krause, P. R., Mont, E. K., Cohen, J. I., and Cullen, B. R. (2010) Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2, J Virol 84, 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  51. Jurak, I., Kramer, M. F., Mellor, J. C., van Lint, A. L., Roth, F. P., Knipe, D. M., and Coen, D. M. (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2, J Virol 84, 4659–4672.

    Article  PubMed  CAS  Google Scholar 

  52. Waidner, L. A., Morgan, R. W., Anderson, A. S., Bernberg, E. L., Kamboj, S., Garcia, M., Riblet, S. M., Ouyang, M., Isaacs, G. K., Markis, M., Meyers, B. C., Green, P. J., and Burnside, J. (2009) MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific, Virology 388, 128–136.

    Article  PubMed  CAS  Google Scholar 

  53. Umbach, J. L., Kramer, M. F., Jurak, I., Karnowski, H. W., Coen, D. M., and Cullen, B. R. (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs, Nature 454, 780–783.

    PubMed  CAS  Google Scholar 

  54. Tang, S., Bertke, A. S., Patel, A., Wang, K., Cohen, J. I., and Krause, P. R. (2008) An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor, Proc Natl Acad Sci U S A 105, 10931–10936.

    Article  PubMed  CAS  Google Scholar 

  55. Tang, S., Patel, A., and Krause, P. R. (2009) Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs, J Virol 83, 1433–1442.

    Article  PubMed  CAS  Google Scholar 

  56. Burnside, J., Ouyang, M., Anderson, A., Bernberg, E., Lu, C., Meyers, B. C., Green, P. J., Markis, M., Isaacs, G., Huang, E., and Morgan, R. W. (2008) Deep sequencing of chicken microRNAs, BMC Genomics 9, 185.

    Article  PubMed  Google Scholar 

  57. Yao, Y., Zhao, Y., Xu, H., Smith, L. P., Lawrie, C. H., Sewer, A., Zavolan, M., and Nair, V. (2007) Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1, J Virol 81, 7164–7170.

    Article  PubMed  CAS  Google Scholar 

  58. Yao, Y., Zhao, Y., Xu, H., Smith, L. P., Lawrie, C. H., Watson, M., and Nair, V. (2008) MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs, J Virol 82, 4007–4015.

    Article  PubMed  CAS  Google Scholar 

  59. Burnside, J., Bernberg, E., Anderson, A., Lu, C., Meyers, B. C., Green, P. J., Jain, N., Isaacs, G., and Morgan, R. W. (2006) Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript, J Virol 80, 8778–8786.

    Article  PubMed  CAS  Google Scholar 

  60. Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M., and Ganem, D. (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells, Nature 435, 682–686.

    Article  PubMed  CAS  Google Scholar 

  61. Cantalupo, P., Doering, A., Sullivan, C. S., Pal, A., Peden, K. W., Lewis, A. M., and Pipas, J. M. (2005) Complete nucleotide sequence of polyomavirus SA12, J Virol 79, 13094–13104.

    Article  PubMed  CAS  Google Scholar 

  62. Seo, G. J., Chen, C. J., and Sullivan, C. S. (2009) Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression, Virology 383, 183–187.

    Article  PubMed  CAS  Google Scholar 

  63. Seo, G. J., Fink, L. H., O’Hara, B., Atwood, W. J., and Sullivan, C. S. (2008) Evolutionarily conserved function of a viral microRNA, J Virol 82, 9823–9828.

    Article  PubMed  CAS  Google Scholar 

  64. Sullivan, C. S., Sung, C. K., Pack, C. D., Grundhoff, A., Lukacher, A. E., Benjamin, T. L., and Ganem, D. (2009) Murine polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection, Virology 387, 157–167.

    Article  PubMed  CAS  Google Scholar 

  65. Yao, Y., Zhao, Y., Smith, L. P., Lawrie, C. H., Saunders, N. J., Watson, M., and Nair, V. K. (2009) Differential expression of miRNAs in Marek’s disease virus-transformed T-lymphoma cell lines, J Gen Virol 90, 1551–1559.

    Article  PubMed  CAS  Google Scholar 

  66. Umbach, J. L., and Cullen, B. R. (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity, Genes Dev 23, 1151–1164.

    Article  PubMed  CAS  Google Scholar 

  67. Marshall, V., Parks, T., Bagni, R., Wang, C. D., Samols, M. A., Hu, J., Wyvil, K. M., Aleman, K., Little, R. F., Yarchoan, R., Renne, R., and Whitby, D. (2007) Conservation of virally encoded micrornas in Kaposi sarcoma--associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric castleman disease, J Infect Dis 195, 645–659.

    Article  PubMed  CAS  Google Scholar 

  68. Gottwein, E., Cai, X., and Cullen, B. R. (2006) A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing, J Virol 80, 5321–5326.

    Article  PubMed  CAS  Google Scholar 

  69. Grey, F., Meyers, H., White, E. A., Spector, D. H., and Nelson, J. (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication, PLoS Pathog 3, e163.

    Article  PubMed  Google Scholar 

  70. Murphy, E., Vanicek, J., Robins, H., Shenk, T., and Levine, A. J. (2008) Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency, Proc Natl Acad Sci U S A 105, 5453–5458.

    Article  PubMed  CAS  Google Scholar 

  71. Stern-Ginossar, N., Saleh, N., Goldberg, M. D., Prichard, M., Wolf, D. G., and Mandelboim, O. (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection, J Virol 83, 10684–10693.

    Article  PubMed  CAS  Google Scholar 

  72. Barth, S., Pfuhl, T., Mamiani, A., Ehses, C., Roemer, K., Kremmer, E., Jaker, C., Hock, J., Meister, G., and Grasser, F. A. (2008) Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5, Nucleic Acids Res 36, 666–675.

    Article  PubMed  CAS  Google Scholar 

  73. Lo, A. K., To, K. F., Lo, K. W., Lung, R. W., Hui, J. W., Liao, G., and Hayward, S. D. (2007) Modulation of LMP1 protein expression by EBV-encoded microRNAs, Proc Natl Acad Sci U S A 104, 16164–16169.

    Article  PubMed  CAS  Google Scholar 

  74. Izumi, K. M., and Kieff, E. D. (1997) The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB, Proc Natl Acad Sci U S A 94, 12592–12597.

    Article  PubMed  CAS  Google Scholar 

  75. Lung, R. W., Tong, J. H., Sung, Y. M., Leung, P. S., Ng, D. C., Chau, S. L., Chan, A. W., Ng, E. K., Lo, K. W., and To, K. F. (2009) Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22, Neoplasia 11, 1174–1184.

    PubMed  CAS  Google Scholar 

  76. Bellare, P., and Ganem, D. (2009) Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation, Cell Host Microbe 6, 570–575.

    Article  PubMed  CAS  Google Scholar 

  77. Lu, F., Stedman, W., Yousef, M., Renne, R., and Lieberman, P. M. (2010) Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway, J Virol 84, 2697–2706.

    Article  PubMed  CAS  Google Scholar 

  78. Areste, C., and Blackbourn, D. J. (2009) Modulation of the immune system by Kaposi’s sarcoma-associated herpesvirus, Trends Microbiol 17, 119–129.

    Article  PubMed  CAS  Google Scholar 

  79. Samols, M. A., Hu, J., Skalsky, R.L., Maldonado, A.M., Riva, A., Lopez, M.C., Baker, H.V., and R. Renne. (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs, PLoS Pathog 3, e65.

    Article  PubMed  Google Scholar 

  80. Taraboletti, G., Benelli, R., Borsotti, P., Rusnati, M., Presta, M., Giavazzi, R., Ruco, L., and Albini, A. (1999) Thrombospondin-1 inhibits Kaposi’s sarcoma (KS) cell and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions, J Pathol 188, 76–81.

    Article  PubMed  CAS  Google Scholar 

  81. Ziegelbauer, J. M., Sullivan, C. S., and Ganem, D. (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs, Nat Genet 41, 130–134.

    Article  PubMed  CAS  Google Scholar 

  82. Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W. H., Chi, J. T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., and Cullen, B. R. (2007) A viral microRNA functions as an orthologue of cellular miR-155, Nature 450, 1096–1099.

    Article  PubMed  CAS  Google Scholar 

  83. Skalsky, R. L., Samols, M. A., Plaisance, K. B., Boss, I. W., Riva, A., Lopez, M. C., Baker, H. V., and Renne, R. (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155, J Virol 81, 12836–12845.

    Article  PubMed  CAS  Google Scholar 

  84. Garzon, R., and Croce, C. M. (2008) MicroRNAs in normal and malignant hematopoiesis, Curr Opin Hematol 15, 352–358.

    Article  PubMed  CAS  Google Scholar 

  85. Qin, Z., Freitas, E., Sullivan, R., Mohan, S., Bacelieri, R., Branch, D., Romano, M., Kearney, P., Oates, J., Plaisance, K., Renne, R., Kaleeba, J., and Parsons, C. (2010) Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress, PLoS Pathog 6, e1000742.

    Article  PubMed  Google Scholar 

  86. Qin, Z., Kearney, P., Plaisance, K., and Parsons, C. H. (2009) Pivotal Advance: Kaposi’s ­sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes, J Leukoc Biol 87, 25–34.

    Article  Google Scholar 

  87. Wang, H. W., Trotter, M. W., Lagos, D., Bourboulia, D., Henderson, S., Makinen, T., Elliman, S., Flanagan, A. M., Alitalo, K., and Boshoff, C. (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma, Nat Genet 36, 687–693.

    Article  PubMed  CAS  Google Scholar 

  88. Carroll, P. A., Brazeau, E., and Lagunoff, M. (2004) Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation, Virology 328, 7–18.

    Article  PubMed  CAS  Google Scholar 

  89. Hansen, A., Henderson, S., Lagos, D., Nikitenko, L., Coulter, E., Roberts, S., Gratrix, F., Plaisance, K., Renne, R., Bower, M., Kellam, P., and Boshoff, C. (2010) KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming, Genes Dev 24, 195–205.

    Article  PubMed  CAS  Google Scholar 

  90. Lei, X., Bai, Z., Ye, F., Xie, J., Kim, C. G., Huang, Y., and Gao, S. J. (2010) Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA, Nat Cell Biol 12, 625.

    Article  CAS  Google Scholar 

  91. Gottwein, E., and Cullen, B. R. (2010) A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest, J Virol 84, 5229–5237.

    Article  PubMed  CAS  Google Scholar 

  92. Choy, E. Y., Siu, K. L., Kok, K. H., Lung, R. W., Tsang, C. M., To, K. F., Kwong, D. L., Tsao, S. W., and Jin, D. Y. (2008) An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival, J Exp Med 205, 2551–2560.

    Article  PubMed  CAS  Google Scholar 

  93. Xia, T., O’Hara, A., Araujo, I., Barreto, J., Carvalho, E., Sapucaia, J. B., Ramos, J. C., Luz, E., Pedroso, C., Manrique, M., Toomey, N. L., Brites, C., Dittmer, D. P., and Harrington, W. J., Jr. (2008) EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3, Cancer Res 68, 1436–1442.

    Article  PubMed  CAS  Google Scholar 

  94. Nachmani, D., Stern-Ginossar, N., Sarid, R., and Mandelboim, O. (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells, Cell Host Microbe 5, 376–385.

    Article  PubMed  CAS  Google Scholar 

  95. Stern-Ginossar, N., Elefant, N., Zimmermann, A., Wolf, D. G., Saleh, N., Biton, M., Horwitz, E., Prokocimer, Z., Prichard, M., Hahn, G., Goldman-Wohl, D., Greenfield, C., Yagel, S., Hengel, H., Altuvia, Y., Margalit, H., and Mandelboim, O. (2007) Host immune system gene ­targeting by a viral miRNA, Science 317, 376–381.

    Article  PubMed  CAS  Google Scholar 

  96. Morgan, R., Anderson, A., Bernberg, E., Kamboj, S., Huang, E., Lagasse, G., Isaacs, G., Parcells, M., Meyers, B. C., Green, P. J., and Burnside, J. (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs, J Virol 82, 12213–12220.

    Article  PubMed  CAS  Google Scholar 

  97. Zhao, Y., Yao, Y., Xu, H., Lambeth, L., Smith, L. P., Kgosana, L., Wang, X., and Nair, V. (2009) A functional MicroRNA-155 ortholog encoded by the oncogenic Marek’s disease virus, J Virol 83, 489–492.

    Article  PubMed  CAS  Google Scholar 

  98. Cameron, J. E., Fewell, C., Yin, Q., McBride, J., Wang, X., Lin, Z., and Flemington, E. K. (2008) Epstein-Barr virus growth/latency III program alters cellular microRNA ­expression, Virology 382, 257–266.

    Article  PubMed  CAS  Google Scholar 

  99. Pegtel, D. M., Cosmopoulos, K., Thorley-Lawson, D. A., van Eijndhoven, M. A., Hopmans, E. S., Lindenberg, J. L., de Gruijl, T. D., Wurdinger, T., and Middeldorp, J. M. (2010) Functional delivery of viral miRNAs via exosomes, Proc Natl Acad Sci U S A 107, 6328–6333.

    Article  PubMed  CAS  Google Scholar 

  100. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol 9, 654–659.

    Article  PubMed  CAS  Google Scholar 

  101. Dolken, L., Perot, J., Cognat, V., Alioua, A., John, M., Soutschek, J., Ruzsics, Z., Koszinowski, U., Voinnet, O., and Pfeffer, S. (2007) Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation, J Virol 81, 13771–13782.

    Article  PubMed  Google Scholar 

  102. Pfeffer, S. (2007) Identification of virally encoded microRNAs, Methods Enzymol 427, 51–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Renne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Plaisance-Bonstaff, K., Renne, R. (2011). Viral miRNAs. In: van Rij, R. (eds) Antiviral RNAi. Methods in Molecular Biology, vol 721. Humana Press. https://doi.org/10.1007/978-1-61779-037-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-037-9_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-036-2

  • Online ISBN: 978-1-61779-037-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics