Skip to main content

Adipogenic Differentiation of Adult Equine Mesenchymal Stromal Cells

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

Equine adipose tissue-derived mesenchymal stem cells (ASCs) have only recently been investigated for their adipogenic, chondrogenic, and osteogenic differentiation potential. This chapter will briefly outline the molecular mechanisms leading to adipogenesis and the methods of equine adipose tissue harvest, ASC isolation, and adipogenic differentiation. The reader is also directed to other reported methods of adipogenesis for ASCs and mesenchymal stem cells (MSCs) from other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vidal, M. A., Kilroy, G. E., Johnson, J. R., Lopez, M. J., Moore, R. M., and Gimble, J. M. (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity, Vet Surg 35, 601–610.

    Article  PubMed  Google Scholar 

  2. Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., and Gimble, J. M. (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells, Vet Surg 36, 613–622.

    Article  PubMed  Google Scholar 

  3. Koerner, J., Nesic, D., Romero, J. D., Brehm, W., Mainil-Varlet, P., and Grogan, S. P. (2006) Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells, Stem Cells 24, 1613–1619.

    Article  PubMed  CAS  Google Scholar 

  4. Arnhold, S. J., Goletz, I., Klein, H., Stumpf, G., Beluche, L. A., Rohde, C., Addicks, K., and Litzke, L. F. (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells, Am J Vet Res 68, 1095–1105.

    Article  PubMed  CAS  Google Scholar 

  5. Reed, S. A. and Johnson, S. E. (2008) Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types, J Cell Physiol 215, 329–336.

    Article  PubMed  CAS  Google Scholar 

  6. Hoynowski, S. M., Fry, M. M., Gardner, B. M., Leming, M. T., Tucker, J. R., Black, L., Sand, T., and Mitchell, K. E. (2007) Characterization and differentiation of equine umbilical cord-derived matrix cells, Biochem Biophys Res Commun 362, 347–353.

    Article  PubMed  CAS  Google Scholar 

  7. Koch, T. G., Heerkens, T., Thomsen, P. D., and Betts, D. H. (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood, BMC Biotechnol 7, 26.

    Article  PubMed  CAS  Google Scholar 

  8. Koch, T. G., Thomsen, P. D., and Betts, D. H. (2009) Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells, Cytotherapy 11, 443–447.

    Article  PubMed  CAS  Google Scholar 

  9. Giovannini, S., Brehm, W., Mainil-Varlet, P., and Nesic, D. (2008) Multilineage differentiation potential of equine blood-derived fibroblast-like cells, Differentiation 76, 118–129.

    Article  PubMed  CAS  Google Scholar 

  10. Rosen, E. D. and Spiegelman, B. M. (2000) Molecular regulation of adipogenesis, Annu Rev Cell Dev Biol 16, 145–171.

    Article  PubMed  CAS  Google Scholar 

  11. Klyde, B. J. and Hirsch, J. (1979) Increased cellular proliferation in adipose tissue of adult rats fed a high-fat diet, J Lipid Res 20, 705–715.

    PubMed  CAS  Google Scholar 

  12. Flier, J. S., Cook, K. S., Usher, P., and Spiegelman, B. M. (1987) Severely impaired adipsin expression in genetic and acquired obesity, Science 237, 405–408.

    Article  PubMed  CAS  Google Scholar 

  13. Min, H. Y. and Spiegelman, B. M. (1986) Adipsin, the adipocyte serine protease: gene structure and control of expression by tumor necrosis factor, Nucleic Acids Res 14, 8879–8892.

    Article  PubMed  CAS  Google Scholar 

  14. Venugopal, J., Hanashiro, K., and Nagamine, Y. (2007) Regulation of PAI-1 gene expression during adipogenesis, J Cell Biochem 101, 369–380.

    Article  PubMed  CAS  Google Scholar 

  15. Leibel, R. L. (2002) The role of leptin in the control of body weight, Nutr Rev 60, S15–S19; discussion S68–84, 85–17.

    Article  PubMed  Google Scholar 

  16. Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y., and Walsh, K. (2003) Obesity, adiponectin and vascular inflammatory disease, Curr Opin Lipidol 14, 561–566.

    Article  PubMed  CAS  Google Scholar 

  17. Nuttall, M. E. and Gimble, J. M. (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications, Curr Opin Pharmacol 4, 290–294.

    Article  PubMed  CAS  Google Scholar 

  18. Cornelius, P., MacDougald, O. A., and Lane, M. D. (1994) Regulation of adipocyte development, Annu Rev Nutr 14, 99–129.

    Article  PubMed  CAS  Google Scholar 

  19. Tang, Q. Q., Gronborg, M., Huang, H., Kim, J. W., Otto, T. C., Pandey, A., and Lane, M. D. (2005) Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis, Proc Natl Acad Sci USA 102, 9766–9771.

    Article  PubMed  CAS  Google Scholar 

  20. Umek, R. M., Friedman, A. D., and McKnight, S. L. (1991) CCAAT-enhancer binding protein: a component of a differentiation switch, Science 251, 288–292.

    Article  PubMed  CAS  Google Scholar 

  21. Altiok, S., Xu, M., and Spiegelman, B. M. (1997) PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A, Genes Dev 11, 1987–1998.

    Article  PubMed  CAS  Google Scholar 

  22. Timchenko, N. A., Wilde, M., Nakanishi, M., Smith, J. R., and Darlington, G. J. (1996) CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein, Genes Dev 10, 804–815.

    Article  PubMed  CAS  Google Scholar 

  23. MacDougald, O. A. and Lane, M. D. (1995) Transcriptional regulation of gene expression during adipocyte differentiation, Annu Rev Biochem 64, 345–373.

    Article  PubMed  CAS  Google Scholar 

  24. Spiegelman, B. M., Choy, L., Hotamisligil, G. S., Graves, R. A., and Tontonoz, P. (1993) Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes, J Biol Chem 268, 6823–6826.

    PubMed  CAS  Google Scholar 

  25. Robinson, C. E., Wu, X., Morris, D. C., and Gimble, J. M. (1998) DNA bending is induced by binding of the peroxisome proliferator-activated receptor gamma 2 heterodimer to its response element in the murine lipoprotein lipase promoter, Biochem Biophys Res Commun 244, 671–677.

    Article  PubMed  CAS  Google Scholar 

  26. Tontonoz, P., Hu, E., Devine, J., Beale, E. G., and Spiegelman, B. M. (1995) PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene, Mol Cell Biol 15, 351–357.

    PubMed  CAS  Google Scholar 

  27. Kim, J. B., Sarraf, P., Wright, M., Yao, K. M., Mueller, E., Solanes, G., Lowell, B. B., and Spiegelman, B. M. (1998) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1, J Clin Invest 101, 1–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, J. B. and Spiegelman, B. M. (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism, Genes Dev 10, 1096–1107.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, M. S. and Goldstein, J. L. (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor, Cell 89, 331–340.

    Article  PubMed  CAS  Google Scholar 

  30. Xu, J. and Liao, K. (2004) Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation, J Biol Chem 279, 35914–35922.

    Article  PubMed  CAS  Google Scholar 

  31. Benito, M., Porras, A., Nebreda, A. R., and Santos, E. (1991) Differentiation of 3T3-L1 fibroblasts to adipocytes induced by ­transfection of ras oncogenes, Science 253, 565–568.

    Article  PubMed  CAS  Google Scholar 

  32. Farmer, S. R. (2006) Transcriptional control of adipocyte formation, Cell Metab 4, 263–273.

    Article  PubMed  CAS  Google Scholar 

  33. Bennett, C. N., Ross, S. E., Longo, K. A., Bajnok, L., Hemati, N., Johnson, K. W., Harrison, S. D., and MacDougald, O. A. (2002) Regulation of Wnt signaling during adipogenesis, J Biol Chem 277, 30998–31004.

    Article  PubMed  CAS  Google Scholar 

  34. Tang, Q. Q., Jiang, M. S., and Lane, M. D. (1999) Repressive effect of Sp1 on the C/EBPalpha gene promoter: role in adipocyte differentiation, Mol Cell Biol 19, 4855–4865.

    PubMed  CAS  Google Scholar 

  35. Tomlinson, J. J., Boudreau, A., Wu, D., Atlas, E., and Hache, R. J. (2006) Modulation of early human preadipocyte differentiation by glucocorticoids, Endocrinology 147, 5284–5293.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, Y., Kim, K. A., Kim, J. H., and Sul, H. S. (2006) Pref-1, a preadipocyte secreted factor that inhibits adipogenesis, J Nutr 136, 2953–2956.

    PubMed  CAS  Google Scholar 

  37. Solomon, C., White, J. H., and Kremer, R. (1999) Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor alpha, J Clin Invest 103, 1729–1735.

    Article  PubMed  CAS  Google Scholar 

  38. Schipper, B. M., Marra, K. G., Zhang, W., Donnenberg, A. D., and Rubin, J. P. (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells, Ann Plast Surg 60, 538–544.

    Article  PubMed  CAS  Google Scholar 

  39. da Silva Meirelles, L., Sand, T. T., Harman, R. J., Lennon, D. P., and Caplan, A. I. (2009) MSC frequency correlates with blood vessel density in equine adipose tissue, Tissue Eng Part A 15, 221–229.

    Article  Google Scholar 

  40. Radcliffe, C. H., Flaminio, M. J., and Fortier, L. A. (2010) Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations, Stem Cells Dev.

    Article  PubMed  CAS  Google Scholar 

  41. de Mattos Carvalho, A., Alves, A. L., Golim, M. A., Moroz, A., Hussni, C. A., de Oliveira, P. G., and Deffune, E. (2009) Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue, Vet Immunol Immunopathol

    Article  PubMed  CAS  Google Scholar 

  42. Martinello, T., Bronzini, I., Maccatrozzo, L., Iacopetti, I., Sampaolesi, M., Mascarello, F., and Patruno, M. (2010) Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood, Tissue Eng Part C Methods.

    Article  PubMed  CAS  Google Scholar 

  43. Meirelles Lda, S. and Nardi, N. B. (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization, Br J Haematol 123, 702–711.

    Article  PubMed  Google Scholar 

  44. Bianco, P., Riminucci, M., Gronthos, S., and Robey, P. G. (2001) Bone marrow stromal stem cells: nature, biology, and potential applications, Stem Cells 19, 180–192.

    Article  PubMed  CAS  Google Scholar 

  45. Bruder, S. P., Jaiswal, N., and Haynesworth, S. E. (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J Cell Biochem 64, 278–294.

    Article  PubMed  CAS  Google Scholar 

  46. Islam, M. Q., Meirelles Lda, S., Nardi, N. B., Magnusson, P., and Islam, K. (2006) Polyethylene glycol-mediated fusion between primary mouse mesenchymal stem cells and mouse fibroblasts generates hybrid cells with increased proliferation and altered differentiation, Stem Cells Dev 15, 905–919.

    Article  PubMed  CAS  Google Scholar 

  47. Otto, W. R. and Rao, J. (2004) Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage, Cell Prolif 37, 97–110.

    Article  PubMed  CAS  Google Scholar 

  48. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., and Keiliss-Borok, I. V. (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo, Transplantation 17, 331–340.

    Article  PubMed  CAS  Google Scholar 

  49. Castro-Malaspina, H., Gay, R. E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., McKenzie, S., Broxmeyer, H. E., and Moore, M. A. (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny, Blood 56, 289–301.

    PubMed  CAS  Google Scholar 

  50. Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., Cancedda, R., and Quarto, R. (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2, Exp Cell Res 287, 98–105.

    Article  PubMed  CAS  Google Scholar 

  51. Hebert, T. L., Wu, X., Yu, G., Goh, B. C., Halvorsen, Y. D., Wang, Z., Moro, C., and Gimble, J. M. (2009) Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis, J Tissue Eng Regen Med 3, 553–561.

    Article  PubMed  CAS  Google Scholar 

  52. Colleoni, S., Bottani, E., Tessaro, I., Mari, G., Merlo, B., Romagnoli, N., Spadari, A., Galli, C., and Lazzari, G. (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor, Vet Res Commun 33:811–821.

    Google Scholar 

  53. Colter, D. C., Class, R., DiGirolamo, C. M., and Prockop, D. J. (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow, Proc Natl Acad Sci USA 97, 3213–3218.

    Article  PubMed  CAS  Google Scholar 

  54. Colter, D. C., Sekiya, I., and Prockop, D. J. (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells, Proc Natl Acad Sci USA 98, 7841–7845.

    Article  PubMed  CAS  Google Scholar 

  55. Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J. G., and Prockop, D. J. (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality, Stem Cells 20, 530–541.

    Article  PubMed  Google Scholar 

  56. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells, Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., and Chen, C. C. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord, Stem Cells 22, 1330–1337.

    Article  PubMed  Google Scholar 

  58. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  59. Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., Di Halvorsen, Y., Storms, R. W., Goh, B., Kilroy, G., Wu, X., and Gimble, J. M. (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers, Stem Cells 24, 376–385.

    Article  PubMed  Google Scholar 

  60. Janderova, L., McNeil, M., Murrell, A. N., Mynatt, R. L., and Smith, S. R. (2003) Human mesenchymal stem cells as an in vitro model for human adipogenesis, Obes Res 11, 65–74.

    Article  PubMed  CAS  Google Scholar 

  61. Hicok, K. C., Thomas, T., Gori, F., Rickard, D. J., Spelsberg, T. C., and Riggs, B. L. (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma, J Bone Miner Res 13, 205–217.

    Article  PubMed  CAS  Google Scholar 

  62. Houghton, A., Oyajobi, B. O., Foster, G. A., Russell, R. G., and Stringer, B. M. (1998) Immortalization of human marrow stromal cells by retroviral transduction with a temperature sensitive oncogene: identification of bipotential precursor cells capable of directed differentiation to either an osteoblast or adipocyte phenotype, Bone 22, 7–16.

    Article  PubMed  CAS  Google Scholar 

  63. Diascro, D. D., Jr., Vogel, R. L., Johnson, T. E., Witherup, K. M., Pitzenberger, S. M., Rutledge, S. J., Prescott, D. J., Rodan, G. A., and Schmidt, A. (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells, J Bone Miner Res 13, 96–106.

    Article  PubMed  CAS  Google Scholar 

  64. Hauner, H., Entenmann, G., Wabitsch, M., Gaillard, D., Ailhaud, G., Negrel, R., and Pfeiffer, E. F. (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium, J Clin Invest 84, 1663–1670.

    Article  PubMed  CAS  Google Scholar 

  65. Scheen, A. J. (2002) (Medication of the month. Rosiglitazone (Avandia)), Rev Med Liege 57, 236–239.

    PubMed  CAS  Google Scholar 

  66. Sen, A., Lea-Currie, Y. R., Sujkowska, D., Franklin, D. M., Wilkison, W. O., Halvorsen, Y. D., and Gimble, J. M. (2001) Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous, J Cell Biochem 81, 312–319.

    Article  PubMed  CAS  Google Scholar 

  67. Orsini, J. A. and Divers, T. J. (1998) Manual of Equine Emergencies: Treatment and Procedures, 1 ed., Saunders, Philadelphia, PA.

    Google Scholar 

  68. Smith, R. K., Korda, M., Blunn, G. W., and Goodship, A. E. (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the ­superficial digital flexor tendon as a potential novel treatment, Equine Vet J 35, 99–102.

    Article  PubMed  CAS  Google Scholar 

  69. Fortier, L. A., Nixon, A. J., Williams, J., and Cable, C. S. (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells, Am J Vet Res 59, 1182–1187.

    PubMed  CAS  Google Scholar 

  70. Halvorsen, Y. D., Bond, A., Sen, A., Franklin, D. M., Lea-Currie, Y. R., Sujkowski, D., Ellis, P. N., Wilkison, W. O., and Gimble, J. M. (2001) Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis, Metabolism 50, 407–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vidal, M.A., Lopez, M.J. (2011). Adipogenic Differentiation of Adult Equine Mesenchymal Stromal Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics