Skip to main content

Use of Human Mesenchymal Stem Cells as Alternative Source of Smooth Muscle Cells in Vessel Engineering

  • Protocol
  • First Online:
Book cover Mesenchymal Stem Cell Assays and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 698))

Abstract

Adult stem cell-derived smooth muscle cells (SMC) may be a promising source of cells for applications in regenerative medicine, including cardiovascular tissue engineering. Primary SMC from native vessels may have limited proliferative capacity and reduced collagen production when sourced from elderly donors, who are the patients in need of vascular grafts due to coronary disease or peripheral arterial disease. Our recent work showed that the ability of human bone marrow-derived mesenchymal stem cells (hMSCs) to differentiate into SMC was modulated by various growth factors, matrix proteins, and mechanical forces. In addition, the components of the culture medium play a very important role in SMC differentiation from hMSCs. In this chapter, we will summarize our experience with the impact of various factors on SMC differentiation from hMSCs. Based upon our findings regarding growth factors, cyclic strain and matrix proteins, a two-phase vessel regeneration culture protocol including a 4-week proliferation phase and a 4-week differentiation phase was developed to optimize proliferation and SMC differentiation of hMSCs consecutively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaushal, S., Amiel, G.E., Guleserian, K.J., Sharpira, O.M., Perry, T., Sutherland, F.W., Rabkin, E., Moran, A.M., Schoen, F.J., Atala, A., Soker, S., Bischoff, J., and Mayer, J.E. (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7, 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  2. Kadner, A., Heorstrup, S.P., Zund, G., Eid, K., Maurus, C., Melinitchouk, S., Grunenfelder, J., and Turina, M.I. (2002) A new source for cardiovascular tissue engineering: Human bone marrow stromal cells. Eur. J. Cardiothorac. Surg. 21, 1055–1060.

    Article  PubMed  Google Scholar 

  3. Hoerstrup, S.P., Kadner, A., Melnitchouk, S., Trojan, A., Eid, K., Tracy, J., Sodian, R., Visjager, J.F., Kolb, S.A., Grunenfelder, J., Zund, G., and Turina, M.I. (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106, I143–I150.

    PubMed  Google Scholar 

  4. Perry, T.E., Kaushal, S., Sutherland, F.W., Guleserian, K.J., Bischoff, J., Sacks, M., and Mayer, J.E. (2003) Bone marrow as a cell source for tissue engineering heart valves. Ann. Thorac. Surg. 75, 761–767.

    Article  PubMed  Google Scholar 

  5. Matsumura, G., Miyagawa-Tomita, S., Shin’oka, T., Ikada, Y., and Kurosawa, H. (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108, 1729–1734.

    Article  PubMed  Google Scholar 

  6. Wu, X., Rabkin-Aikawa, E., Guleserian, K.J., Perry, T.E., Masuda, Y., Sutherland, F.W., Schoen, F.J., Mayer, J.E., and Bischoff, J. (2004) Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287, H480–H487.

    Article  PubMed  CAS  Google Scholar 

  7. Cho, S.W., Lim, S.H., Kim, I.K., Hong, Y.S., Kim, S.S., Yoo, K.J., Park, H.Y., Jang, Y., Cahng, B.C., Choi, C.Y., Hwang, K.C., and Kim, B.S. (2005) Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241, 506–515.

    Article  PubMed  Google Scholar 

  8. Liu, J.Y., Swartz, D.D., Peng, H.F., Gugino, S.F., Russell, J.A., and Andreadis, S.T. (2007) Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc. Res. 75, 618–628.

    Article  PubMed  CAS  Google Scholar 

  9. Gong, Z., Calkins, G., Cheng, E.,  Krause, D., and Niklason, L.E. (2009) Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells. Tissue Eng. Part A 15, 319–330.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang, F., Tsai, S., Kato, K., Yamanouchi, D., Wang, C., Rafii, S., Liu, B., and Kent, K.C. (2009) Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J. Biol. Chem. 284, 17564–17574.

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi, N., Yasu, T., Ueba, H., Sata, M., Hashimoto, S., Kuroki, M., Saito, M., and Kawakami, M. (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp. Hematol. 32, 1238–1245.

    Article  PubMed  CAS  Google Scholar 

  12. Ball, S.G., Shuttleworth, A.C., and Kielty, C.M. (2004) Direct cell contact influences bone marrow mesenchymal stem cell fate. Int. J. Biochem. Cell Biol. 36, 714–727.

    Article  PubMed  CAS  Google Scholar 

  13. Lozito, T.P., Kuo, C.K., Taboas, J.M., and Tuan, R.S. (2009) Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J. Cell Biochem. 107, 714–722.

    Article  PubMed  CAS  Google Scholar 

  14. Gong, Z., and Niklason, L.E. (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 22, 1635–1648.

    Article  PubMed  CAS  Google Scholar 

  15. Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R., and Langer, R. (1999) Functional arteries grown in vitro. Science 284, 489–493.

    Article  PubMed  CAS  Google Scholar 

  16. Niklason, L.E., Abbott, W., Gao, J., Klagges, B., Hirschi, K.K., Ulubayram, K., Conroy, N., Jones, R., Vasanawala, A., Sanzgiri, S., and Langer, R.L. (2001) Morphologic and mechanical characteristics of bovine engineered arteries. J. Vasc. Surg. 33, 628–638.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for Drs. Caroline Rhim and Shannon L.  M.  Dahl for their contribution to the development and optimization of the bioreactor setup protocol. This work is funded by National Institute of Health RO1HL083895 and HL063766 (both to LEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Niklason .

Editor information

Editors and Affiliations

Disclosure

Disclosure

L.E.N. has a financial interest in Humacyte, Inc., a regenerative medicine company. Humacyte did not fund these studies, and Humacyte did not affect the design, interpretation, or reporting of any of the experiments herein.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gong, Z., Niklason, L.E. (2011). Use of Human Mesenchymal Stem Cells as Alternative Source of Smooth Muscle Cells in Vessel Engineering. In: Vemuri, M., Chase, L., Rao, M. (eds) Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology, vol 698. Humana Press. https://doi.org/10.1007/978-1-60761-999-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-999-4_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-998-7

  • Online ISBN: 978-1-60761-999-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics