Skip to main content

Generation of Chimeras by Aggregation of Embryonic Stem Cells with Diploid or Tetraploid Mouse Embryos

  • Protocol
  • First Online:
Transgenic Mouse Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 693))

Abstract

From the hybrid creatures of the Greek and Egyptian mythologies, the concept of the chimera has evolved and, in modern day biology, refers to an organism comprises of at least two populations of genetically distinct cells. Mouse chimeras have proven an invaluable tool for the generation of genetically modified strains. In addition, chimeras have been extensively used in developmental biology as a powerful tool to analyze the phenotype of specific mutations, to attribute function to gene products and to address the question of cell autonomy versus noncell autonomy of gene function. This chapter describes a simple and economical technique used to generate mouse chimeras by embryo aggregation. Multiple aggregation combinations are described each of which can be tailored to answer particular biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins, F. S., Rossant, J., and Wurst, W. (2007) A mouse for all reasons, Cell 128, 9–13.

    Article  PubMed  CAS  Google Scholar 

  2. Mintz, B. (1962) Formation of genetically mosaic mouse embryos, Am Zool 2, 432.

    Google Scholar 

  3. Tarkowski, A. K. (1961) Mouse chimaeras developed from fused eggs, Nature 190, 857–860.

    Article  PubMed  CAS  Google Scholar 

  4. Gardner, R. L. (1968) Mouse chimeras obtained by the injection of cells into the blastocyst, Nature 220, 596–597.

    Article  PubMed  CAS  Google Scholar 

  5. Arnold, S. J., and Robertson, E. J. (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo, Nat Rev Mol Cell Biol 10, 91–103.

    Article  PubMed  CAS  Google Scholar 

  6. Dietrich, J. E., and Hiiragi, T. (2008) Stochastic processes during mouse blastocyst patterning, Cells Tissues Organs 188, 46–51.

    Article  PubMed  Google Scholar 

  7. Rossant, J., and Tam, P. P. (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse, Development 136, 701–713.

    Article  PubMed  CAS  Google Scholar 

  8. Yamanaka, Y., Ralston, A., Stephenson, R. O., and Rossant, J. (2006) Cell and molecular regulation of the mouse blastocyst, Dev Dyn 235, 2301–2314.

    Article  PubMed  CAS  Google Scholar 

  9. Kwon, G. S., Viotti, M., and Hadjantonakis, A. K. (2008) The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages, Dev Cell 15, 509–520.

    Article  PubMed  CAS  Google Scholar 

  10. Evans, M. J., and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos, Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  11. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc Natl Acad Sci USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., and Rogers, D. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides, Nature 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  13. Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., and Gough, N. M. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells, Nature 336, 684–687.

    Article  PubMed  CAS  Google Scholar 

  14. Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3, Cell 115, 281–292.

    Article  PubMed  CAS  Google Scholar 

  15. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008) The ground state of embryonic stem cell self-renewal, Nature 453, 519–523.

    Article  PubMed  CAS  Google Scholar 

  16. Beddington, R. S., and Robertson, E. J. (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo, Development 105, 733–737.

    PubMed  CAS  Google Scholar 

  17. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines, Nature 309, 255–256.

    Article  PubMed  CAS  Google Scholar 

  18. Nagy, A., Sass, M., and Markkula, M. (1989) Systematic non-uniform distribution of parthenogenetic cells in adult mouse chimaeras, Development 106, 321–324.

    PubMed  CAS  Google Scholar 

  19. Kunath, T., Arnaud, D., Uy, G. D., Okamoto, I., Chureau, C., Yamanaka, Y., Heard, E., Gardner, R. L., Avner, P., and Rossant, J. (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts, Development 132, 1649–1661.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A., and Rossant, J. (1998) Promotion of trophoblast stem cell proliferation by FGF4, Science 282, 2072–2075.

    Article  PubMed  CAS  Google Scholar 

  21. Eakin, G. S., and Behringer, R. R. (2003) Tetraploid development in the mouse, Dev Dyn 228, 751–766.

    Article  PubMed  Google Scholar 

  22. Snow, M. H. (1973) Tetraploid mouse embryos produced by cytochalasin B during cleavage, Nature 244, 513–515.

    Article  PubMed  CAS  Google Scholar 

  23. Tarkowski, A. K., Witkowska, A., and Opas, J. (1977) Development of cytochalasin in B-induced tetraploid and diploid/tetraploid mosaic mouse embryos, J Embryol Exp Morphol 41, 47–64.

    PubMed  CAS  Google Scholar 

  24. Eakin, G. S., Hadjantonakis, A. K., Papaioannou, V. E., and Behringer, R. R. (2005) Developmental potential and behavior of tetraploid cells in the mouse embryo, Dev Biol 288, 150–159.

    Article  PubMed  CAS  Google Scholar 

  25. Mackay, G. E., and West, J. D. (2005) Fate of tetraploid cells in 4n ↔ 2n chimeric mouse blastocysts, Mech Dev 122, 1266–1281.

    Article  PubMed  CAS  Google Scholar 

  26. Cross, J. C. (2001) Factors affecting the developmental potential of cloned mammalian embryos, Proc Natl Acad Sci U S A 98, 5949–5951.

    Article  PubMed  CAS  Google Scholar 

  27. Eggan, K., Akutsu, H., Loring, J., Jackson-Grusby, L., Klemm, M., Rideout, W. M., 3rd, Yanagimachi, R., and Jaenisch, R. (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation, Proc Natl Acad Sci U S A 98, 6209–6214.

    Article  PubMed  CAS  Google Scholar 

  28. Wakayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R., and Mombaerts, P. (1999) Mice cloned from embryonic stem cells, Proc Natl Acad Sci U S A 96, 14984–14989.

    Article  PubMed  CAS  Google Scholar 

  29. Joyner, A. L. (2001) Gene targeting: A practical approach, second edition, The Practical Approach Series.

    Google Scholar 

  30. Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2003) Manipulating the mouse embryo. A laboratory manual, third edition, Cold Spring Harbor Press.

    Google Scholar 

  31. Hadjantonakis, A. K., Dickinson, M. E., Fraser, S. E., and Papaioannou, V. E. (2003) Technicolour transgenics: imaging tools for functional genomics in the mouse, Nat Rev Genet 4, 613–625.

    Article  PubMed  CAS  Google Scholar 

  32. Nowotschin, S., Eakin, G. S., and Hadjantonakis, A. K. (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives, Trends Biotechnol 27, 266–276.

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka, M., Gertsenstein, M., Rossant, J., and Nagy, A. (1997) Mash2 acts cell autonomously in mouse spongiotrophoblast development, Dev Biol 190, 55–65.

    Article  PubMed  CAS  Google Scholar 

  34. Hadjantonakis, A. K., Macmaster, S., and Nagy, A. (2002) Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal, BMC Biotechnol 2, 11.

    Article  PubMed  Google Scholar 

  35. Adams, R. H., Porras, A., Alonso, G., Jones, M., Vintersten, K., Panelli, S., Valladares, A., Perez, L., Klein, R., and Nebreda, A. R. (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development, Mol Cell 6, 109–116.

    PubMed  CAS  Google Scholar 

  36. Damert, A., Miquerol, L., Gertsenstein, M., Risau, W., and Nagy, A. (2002) Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation, Development 129, 1881–1892.

    PubMed  CAS  Google Scholar 

  37. Duncan, S. A., Nagy, A., and Chan, W. (1997) Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(−/−) embryos, Development 124, 279–287.

    PubMed  CAS  Google Scholar 

  38. Guillemot, F., Nagy, A., Auerbach, A., Rossant, J., and Joyner, A. L. (1994) Essential role of Mash-2 in extraembryonic development, Nature 371, 333–336.

    Article  PubMed  CAS  Google Scholar 

  39. Yamamoto, H., Flannery, M. L., Kupriyanov, S., Pearce, J., McKercher, S. R., Henkel, G. W., Maki, R. A., Werb, Z., and Oshima, R. G. (1998) Defective trophoblast function in mice with a targeted mutation of Ets2, Genes Dev 12, 1315–1326.

    Article  PubMed  CAS  Google Scholar 

  40. Varlet, I., Collignon, J., and Robertson, E. J. (1997) Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation, Development 124, 1033–1044.

    PubMed  CAS  Google Scholar 

  41. Ciruna, B. G., Schwartz, L., Harpal, K., Yamaguchi, T. P., and Rossant, J. (1997) Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak, Development 124, 2829–2841.

    PubMed  CAS  Google Scholar 

  42. de Bruin, A., Wu, L., Saavedra, H. I., Wilson, P., Yang, Y., Rosol, T. J., Weinstein, M., Robinson, M. L., and Leone, G. (2003) Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice, Proc Natl Acad Sci USA 100, 6546–6551.

    Article  PubMed  Google Scholar 

  43. Wu, L., de Bruin, A., Saavedra, H. I., Starovic, M., Trimboli, A., Yang, Y., Opavska, J., Wilson, P., Thompson, J. C., Ostrowski, M. C., Rosol, T. J., Woollett, L. A., Weinstein, M., Cross, J. C., Robinson, M. L., and Leone, G. (2003) Extra-embryonic function of Rb is essential for embryonic development and viability, Nature 421, 942–947.

    Article  PubMed  CAS  Google Scholar 

  44. Mereau, A., Grey, L., Piquet-Pellorce, C., and Heath, J. K. (1993) Characterization of a binding protein for leukemia inhibitory factor localized in extracellular matrix, J Cell Biol 122, 713–719.

    Article  PubMed  CAS  Google Scholar 

  45. McMahon, A. P., and Bradley, A. (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain, Cell 62, 1073–1085.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Katerina Hadjantonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Artus, J., Hadjantonakis, AK. (2011). Generation of Chimeras by Aggregation of Embryonic Stem Cells with Diploid or Tetraploid Mouse Embryos. In: Hofker, M., van Deursen, J. (eds) Transgenic Mouse Methods and Protocols. Methods in Molecular Biology, vol 693. Humana Press. https://doi.org/10.1007/978-1-60761-974-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-974-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-973-4

  • Online ISBN: 978-1-60761-974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics