Skip to main content

Ribosome Display: A Technology for Selecting and Evolving Proteins from Large Libraries

  • Protocol
  • First Online:
PCR Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 687))

Abstract

The selection and concomitant affinity maturation of proteins to bind to user-defined target molecules have become a key technology in biochemical research, diagnostics, and therapy. One of the most potent selection technologies for such applications is ribosome display. It works entirely in vitro, and this has two important consequences. First, since no transformation of any cells is required, libraries with much greater diversity can be handled than with most other techniques. Second, since a library does not have to be cloned and transformed, it is very convenient to introduce random errors in the library by PCR-based methods and select improved binders. Thus, a true directed evolution, an iteration between randomization and selection over several generations, can be conveniently carried out, e.g., for affinity maturation. Ribosome display has been used successfully for the selection of antibody fragments and other binding proteins, such as Designed Ankyrin Repeat Proteins (DARPins).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228,1315–17.

    Article  PubMed  CAS  Google Scholar 

  2. Hanes, J. and Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–42.

    Article  PubMed  CAS  Google Scholar 

  3. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R., and Plückthun, A. (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95, 14130–5.

    Article  PubMed  CAS  Google Scholar 

  4. Roberts, R. W. and Szostak, J. W. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–302.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, R., Barrick, J. E., Szostak, J. W., and Roberts, R. W. (2000) Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol. 318, 268–93.

    Article  PubMed  CAS  Google Scholar 

  6. Wörn, A. and Plückthun A. (2001) Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010.

    Article  PubMed  Google Scholar 

  7. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J., and Plückthun, A. (2001) Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. USA 98, 75–80.

    Article  PubMed  CAS  Google Scholar 

  8. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–91.

    Article  PubMed  CAS  Google Scholar 

  9. Zaccolo, M., Williams, D. M., Brown, D. M., and Gherardi, E. (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255, 589–603.

    Article  PubMed  CAS  Google Scholar 

  10. Mattheakis, L. C., Bhatt, R. R., and Dower, W. J. (1994) An in vitro polysome display ­system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–6.

    Article  PubMed  CAS  Google Scholar 

  11. Hanes, J., Jermutus, L., and Plückthun, A. (2000) Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328, 404–30.

    Article  PubMed  CAS  Google Scholar 

  12. Hanes, J., Schaffitzel, C., Knappik, A., and Plückthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–92.

    Article  PubMed  CAS  Google Scholar 

  13. Luginbühl, B., Kanyo, Z., Jones, R. M., Fletterick, R. J., Prusiner, S. B., Cohen, F. E., Williamson, R. A., Burton, D. R., and Plückthun, A. (2006) Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J. Mol. Biol. 363, 75–97.

    Article  PubMed  Google Scholar 

  14. Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P., and Plückthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.

    Article  PubMed  CAS  Google Scholar 

  15. Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., Pecorari, F., Ward, C. W., Joos, T. O., and Plückthun, A. (2007) A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369, 1015–28.

    Article  PubMed  CAS  Google Scholar 

  16. Binz, H. K., Amstutz, P., Kohl, A., Stumpp, M. T., Briand, C., Forrer, P., Grütter, M. G., and Plückthun, A. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–82.

    Article  PubMed  CAS  Google Scholar 

  17. Amstutz, P., Binz, H. K., Parizek, P., Stumpp, M. T., Kohl, A., Grütter, M. G., Forrer, P., and Plückthun, A. (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–22.

    Article  PubMed  CAS  Google Scholar 

  18. Zahnd, C., Pécorari, F., Straumann, N., Wyler, E., and Plückthun, A. (2006) Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281, 35167–75.

    Article  PubMed  CAS  Google Scholar 

  19. Schweizer, A., Roschitzki-Voser, H., Amstutz, P., Briand, C., Gulotti-Georgieva, M., Prenosil, E., Binz, H. K., Capitani, G., Baici, A., Plückthun, A., and Grütter, M. G. (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15, 625–36.

    Article  PubMed  CAS  Google Scholar 

  20. Huber, T., Steiner, D., Röthlisberger, D., and Plückthun, A. (2007) In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na+-citrate symporter CitS as an example. J. Struct. Biol. 159, 206–21.

    Article  PubMed  CAS  Google Scholar 

  21. Schatz, P. J. (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology 11, 101138–43.

    Google Scholar 

  22. Wade, H. E. and Robinson, H. K. (1966) Magnesium ion-independent ribonucleic acid depolymerases in bacteria. Biochem. J. 101, 467–79.

    PubMed  CAS  Google Scholar 

  23. Laminet, A. A. and Plückthun, A. (1989) The precursor of beta-lactamase: purification, properties and folding kinetics. EMBO J. 8, 1469–77.

    PubMed  CAS  Google Scholar 

  24. O’Callaghan, C. H., Morris, A., Kirby, S. M., and Shingler, A. H. (1972) Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1, 283–8.

    PubMed  Google Scholar 

  25. Steiner, D., Forrer, P., and Plückthun, A. (2008) Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 382, 1211–27.

    Article  PubMed  CAS  Google Scholar 

  26. Zahnd, C., Amstutz, P., and Plückthun, A. (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–79.

    Article  PubMed  CAS  Google Scholar 

  27. Hajnsdorf, E., Braun, F., Haugel-Nielsen, J., Le Derout, J., and Régnier, P. (1996) Multiple degradation pathways of the rpsO mRNA of Escherichia coli. RNase E interacts with the 5′ and 3′ extremities of the primary transcript. Biochimie 78, 416–24.

    Article  PubMed  CAS  Google Scholar 

  28. Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–96.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, W. P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R., and Barbas, C. F. 3rd. (1995) CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403.

    Article  PubMed  CAS  Google Scholar 

  30. Amstutz, P., Binz, H. K., Zahnd, C., and Plückthun, A. (2006) Ribosome display: In vitro selection of protein-protein interactions. In “Cell Biology: A Laboratory Handbook” (Celis, J., ed.), 497–509. Elsevier, Amsterdam.

    Google Scholar 

  31. Chen, H. Z. and Zubay, G. (1983) Prokaryotic coupled transcription-translation. Methods Enzymol. 101, 674–690.

    Article  PubMed  CAS  Google Scholar 

  32. Pratt, J. M. (1984) Coupled transcription-translation in prokaryotic cell-free systems. In “Current Protocols” (Hemes B. D. and Higgins S. J., eds.), 179–209. IRL Press, Oxford.

    Google Scholar 

  33. Kushner, S. R. (2002) mRNA decay in Escherichia coli comes of age. J. Bacteriol. 184, 4658–65; discussion 4657.

    Article  PubMed  CAS  Google Scholar 

  34. Sambrook, J. and Russel, D. W. (2001) Molecular cloning: A laboratory handbook, 3rd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  35. Zahnd, C., Sarkar, C. A., and Plückthun, A. (2010) Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng. Des. Sel. 23, 175–84.

    Article  PubMed  CAS  Google Scholar 

  36. Willuda, J., Honegger, A., Waibel, R., Schubiger, P. A., Stahel, R., Zangemeister-Wittke, U., and Plückthun, A. (1999) High thermal stability is essential for tumor targeting of antibody fragments: Engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59, 5758–67.

    PubMed  CAS  Google Scholar 

  37. Proba, K., Wörn, A., Honegger, A., and Plückthun, A. (1998) Antibody scFv fragments without disulfide bonds made by molecular evolution. J. Mol. Biol. 275, 245–53.

    Article  PubMed  CAS  Google Scholar 

  38. Chames, P. and Baty D. (2000) Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiol. Lett. 189, 1–8.

    Article  PubMed  CAS  Google Scholar 

  39. Honegger, A., Malebranche, A. D., Röthlisberger, D., and Plückthun, A. (2009) The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng. Des. Sel. 22, 121–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank many former and current members of the Plückthun laboratory for establishing and continuously optimizing the ribosome display protocol. In this respect we thank the following people not only, but especially for the following efforts: Petra Parizek, Birgit Lindner, and Gabriela Nagy-Davidescu for revision of the pRDV plasmid sequence, Oliver Scholz for the testing of the EWT5s primer, amplification conditions, and RNA yield, Fabio Parmeggiani for testing of the illustra G50 columns, and Gautham Varadamsetty and Hilmar Ebersbach for their help in testing enzymes on different protein scaffolds. Work on ribosome display was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Dreier, B., Plückthun, A. (2011). Ribosome Display: A Technology for Selecting and Evolving Proteins from Large Libraries. In: Park, D. (eds) PCR Protocols. Methods in Molecular Biology, vol 687. Humana Press. https://doi.org/10.1007/978-1-60761-944-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-944-4_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-943-7

  • Online ISBN: 978-1-60761-944-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics