Skip to main content

Impulsivity

  • Protocol
  • First Online:
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 53))

Abstract

Impulsivity is a multifaceted behavioural trait commonly linked to drug abuse and addiction involving rash or risky behaviour and a strong tendency towards spur-of-the-moment, poorly judged decisions and actions. At its core, impulsivity arises through an inability to adequately suppress or inhibit inappropriate behaviour and by a general intolerance to delayed gratification, a tendency also widely found in abstinent drug addicts. Despite intensive research, however, it remains unclear whether impulsivity arises from neural abnormalities produced by the chronic exposure of individuals to drugs such as alcohol and cocaine (‘state impulsivity’) potentially via interactions with medial temporal lobe and frontal cortical structures (e.g., amygdala, hippocampus, anterior cingulate cortex, orbitofrontal cortex) or whether instead ‘trait impulsivity’ and brain disorders linked to it – for example, attention deficit/hyperactivity disorder (ADHD) – predispose to drug use and addiction. This chapter considers both possibilities from a neural systems and psychological perspective drawing on evidence from animal models and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 8(11):1450–1457

    PubMed  CAS  Google Scholar 

  2. Verdejo-Garcia A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 32(4):777–810

    PubMed  Google Scholar 

  3. Sarramon C, Verdoux H, Schmitt L, Bourgeois M (1999) Addiction and personality traits: sensation seeking, anhedonia, impulsivity. L’Encephale 25(6):569–575

    PubMed  CAS  Google Scholar 

  4. Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158(11):1783–1793

    PubMed  CAS  Google Scholar 

  5. Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146(4):348–361

    PubMed  CAS  Google Scholar 

  6. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psycho­pharmacology 146(4):373–390

    PubMed  CAS  Google Scholar 

  7. Volkow ND, Fowler JS, Wang GJ (2002) Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 13(5–6):355–366

    PubMed  CAS  Google Scholar 

  8. Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacology 200(1):1–26

    PubMed  CAS  Google Scholar 

  9. Olmstead MC (2006) Animal models of drug addiction: where do we go from here? Q J Exp Psychol 59(4):625–653

    Google Scholar 

  10. Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11(2):250–257

    PubMed  CAS  Google Scholar 

  11. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science (New York, NY) 278(5335):52–58

    CAS  Google Scholar 

  12. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129

    PubMed  CAS  Google Scholar 

  13. Koob GF (2008) Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 56(Suppl 1):18–31

    PubMed  Google Scholar 

  14. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science (New York, NY) 320(5881):1352–1355

    CAS  Google Scholar 

  15. Milich R, Kramer J (1984) Reflections on impulsivity: an empirical investigation of impulsivity as a construct. Adv Learn Behav Disabil 3:57–94

    Google Scholar 

  16. Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26(4):379–395

    PubMed  Google Scholar 

  17. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51(6):768–774

    PubMed  CAS  Google Scholar 

  18. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65–94

    PubMed  CAS  Google Scholar 

  19. Nigg JT (2001) Is ADHD a disinhibitory disorder? Psychol Bull 127(5):571–598

    PubMed  CAS  Google Scholar 

  20. Eysenck SB, Eysenck HJ (1977) The place of impulsiveness in a dimensional system of personality description. Br J Soc Clin Psychol 16(1):57–68

    PubMed  CAS  Google Scholar 

  21. Dickman SJ (1990) Functional and dysfunctional impulsivity: personality and cognitive correlates. J Pers Soc Psychol 58(1):95–102

    PubMed  CAS  Google Scholar 

  22. Dickman S (1985) Impulsivity and perception: individual differences in the processing of the local and global dimensions of stimuli. J Pers Soc Psychol 48(1):133–149

    PubMed  CAS  Google Scholar 

  23. Dickman SJ, Meyer DE (1988) Impulsivity and speed-accuracy tradeoffs in information processing. J Pers Soc Psychol 54(2):274–290

    PubMed  CAS  Google Scholar 

  24. Cloninger CR (1987) Neurogenetic adaptive mechanisms in alcoholism. Science (New York, NY) 236(4800):410–416

    CAS  Google Scholar 

  25. Logan GD (1994) On the ability to inhibit thought and action. A users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory and language. Academic, San Diego, CA, pp 189–236

    Google Scholar 

  26. Sonuga-Barke EJ, Houlberg K, Hall M (1994) When is “impulsiveness” not impulsive? The case of hyperactive children’s cognitive style. J Child Psychol Psychiatr Allied Discip 35(7):1247–1253

    CAS  Google Scholar 

  27. Taylor E (1998) Clinical foundations of hyperactivity research. Behav Brain Res 94(1):11–24

    PubMed  CAS  Google Scholar 

  28. Tarter R, Vanyukov M, Giancola P et al (1999) Etiology of early age onset substance use disorder: a maturational perspective. Dev Psychopathol 11(4):657–683

    PubMed  CAS  Google Scholar 

  29. Cloninger CR, Sigvardsson S, Bohman M (1988) Childhood personality predicts alcohol abuse in young adults. Alcohol Clin Exp Res 12(4):494–505

    PubMed  CAS  Google Scholar 

  30. Gotham HJ, Sher KJ, Wood PK (1997) Predicting stability and change in frequency of intoxication from the college years to beyond: individual-difference and role transition variables. J Abnorm Psychol 106(4):619–629

    PubMed  CAS  Google Scholar 

  31. de Wit H, Richards JB (2004) Dual determinants of drug use in humans: reward and impulsivity. Nebr Symp Motiv 50:19–55

    PubMed  Google Scholar 

  32. Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13(3):214–228

    PubMed  Google Scholar 

  33. Harnishfeger K (1995) Development of cognitive inhibition. In: Dempster F, Brainerd C (eds) Interference and inhibition in cognition. Academic, New York

    Google Scholar 

  34. Robbins TW (1996) Dissociating executive functions of the prefrontal cortex. Philos Trans R Soc Lond 351(1346):1463–1470, discussion 70–1

    CAS  Google Scholar 

  35. Barratt ES, Patton JH (1983) Impulsivity: cognitive, behavioral, and psychophysiological correlates. In: Zuckerman M (ed) Biological basis of sensation seeking, impulsivity, and anxiety. Erlbaum, Hillsdale, NJ, pp 77–116

    Google Scholar 

  36. Eysenck HJ (1993) The nature of impulsivity. In: McCown WG, Johnson JL, Sure MB (eds) The impulsive client: theory, research, and treatment. American Psychological Association, Washington, DC

    Google Scholar 

  37. Achenbach TM, Edelbrock CS (1979) The child behavior profile: II. Boys aged 12-16 and girls aged 6-11 and 12-16. J Consult Clin Psychol 47(2):223–233

    PubMed  CAS  Google Scholar 

  38. Eysenck HJ, Eysenck SBG (1975) Manual of the Eysenck personality questionnaire. Hodder & Stoughton, London

    Google Scholar 

  39. Kendall PC, Wilcox LE (1979) Self-control in children: development of a rating scale. J Consult Clin Psychol 47(6):1020–1029

    PubMed  CAS  Google Scholar 

  40. Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol 10(2):276–291

    CAS  Google Scholar 

  41. Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psycho­pharmacology 199(3):439–456

    PubMed  CAS  Google Scholar 

  42. Rachlin H, Green L (1972) Commitment, choice and self-control. J Exp Anal Behav 17(1):15–22

    PubMed  CAS  Google Scholar 

  43. Mitchell SH (2004) Measuring impulsivity and modeling its association with cigarette smoking. Behav Cogn Neurosci Rev 3(4):261–275

    PubMed  Google Scholar 

  44. Robbins TW (2007) Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond 362(1481):917–932

    CAS  Google Scholar 

  45. Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psycho­pharmacology 128(2):161–170

    PubMed  CAS  Google Scholar 

  46. Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82(4):463–496

    PubMed  CAS  Google Scholar 

  47. Evenden JL, Ryan CN (1999) The pharma­cology of impulsive behaviour in rats VI: the effects of ethanol and selective serotonergic drugs on response choice with varying delays of reinforcement. Psychopharmacology 146(4):413–421

    PubMed  CAS  Google Scholar 

  48. Mar AC, Robbins TW (2007) Delay discounting and impulsive choice in the rat. Current protocols in neuroscience/editorial board, Jacqueline N Crawley [et al]; Chapter 8:Unit 8 22.

    Google Scholar 

  49. Mazur JE, Coe D (1987) Tests of transitivity in choices between fixed and variable reinforcer delays. J Exp Anal Behav 47(3):287–297

    PubMed  CAS  Google Scholar 

  50. Cardinal RN (2006) Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw 19(8):1277–1301

    PubMed  Google Scholar 

  51. Perry JL, Larson EB, German JP, Madden GJ, Carroll ME (2005) Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology 178(2–3):193–201

    PubMed  CAS  Google Scholar 

  52. Diergaarde L, Pattij T, Poortvliet I et al (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63(3):301–308

    PubMed  CAS  Google Scholar 

  53. Perry JL, Nelson SE, Carroll ME (2008) Impulsive choice as a predictor of acquisition of IV cocaine self- administration and reinstatement of cocaine-seeking behavior in male and female rats. Exp Clin Psycho­pharmacol 16(2):165–177

    PubMed  Google Scholar 

  54. Poulos CX, Le AD, Parker JL (1995) Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behav Pharmacol 6(8):810–814

    PubMed  Google Scholar 

  55. Wulfert E, Block JA, Santa Ana E, Rodriguez ML, Colsman M (2002) Delay of gratification: impulsive choices and problem behaviors in early and late adolescence. J Pers 70(4):533–552

    PubMed  Google Scholar 

  56. Kollins SH (2003) Delay discounting is associated with substance use in college students. Addict Behav 28(6):1167–1173

    PubMed  Google Scholar 

  57. Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology 152(4):362–375

    PubMed  CAS  Google Scholar 

  58. Poulos CX, Parker JL, Le DA (1998) Increased impulsivity after injected alcohol predicts later alcohol consumption in rats: evidence for “loss-of-control drinking” and marked individual differences. Behav Neurosci 112(5):1247–1257

    PubMed  CAS  Google Scholar 

  59. Ortner CN, MacDonald TK, Olmstead MC (2003) Alcohol intoxication reduces impulsi­vity in the delay-discounting paradigm. Alco­hol Alcohol (Oxford, Oxfordshire) 38(2):151–156

    Google Scholar 

  60. Richards JB, Zhang L, Mitchell SH, de Wit H (1999) Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav 71(2):121–143

    PubMed  CAS  Google Scholar 

  61. Paine TA, Dringenberg HC, Olmstead MC (2003) Effects of chronic cocaine on impulsivity: relation to cortical serotonin mechanisms. Behav Brain Res 147(1–2):135–147

    PubMed  CAS  Google Scholar 

  62. Logue AW, Tobin H, Chelonis JJ, Wang RY, Geary N, Schachter S (1992) Cocaine decreases self-control in rats: a preliminary report. Psychopharmacology 109(1–2):245–247

    PubMed  CAS  Google Scholar 

  63. Simon NW, Mendez IA, Setlow B (2007) Cocaine exposure causes long-term increases in impulsive choice. Behav Neurosci 121(3):543–549

    PubMed  CAS  Google Scholar 

  64. Richards JB, Sabol KE, de Wit H (1999) Effects of methamphetamine on the adjusting amount procedure, a model of impulsive behavior in rats. Psychopharmacology 146(4):432–439

    PubMed  CAS  Google Scholar 

  65. Dallery J, Locey ML (2005) Effects of acute and chronic nicotine on impulsive choice in rats. Behav Pharmacol 16(1):15–23

    PubMed  CAS  Google Scholar 

  66. Paine TA, Olmstead MC (2004) Cocaine disrupts both behavioural inhibition and conditional discrimination in rats. Psychopharmacology 175(4):443–450

    PubMed  CAS  Google Scholar 

  67. van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psycho­pharmacology 187(1):73–85

    PubMed  CAS  Google Scholar 

  68. Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G (2007) Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J Neurosci 27(1):245–250

    PubMed  CAS  Google Scholar 

  69. Liu S, Heitz RP, Bradberry CW (2009) A touch screen based stop signal response task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration. J Neurosci Methods 177(1):67–72

    PubMed  Google Scholar 

  70. Dalley JW, Laane K, Pena Y, Theobald DE, Everitt BJ, Robbins TW (2005) Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology 182(4):579–587

    PubMed  CAS  Google Scholar 

  71. van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 60(1):66–73

    PubMed  Google Scholar 

  72. Blackburn JR, Hevenor SJ (1996) Amphe­tamine disrupts negative patterning but does not produce configural association deficits on an alternative task. Behav Brain Res 80(1–2):41–49

    PubMed  CAS  Google Scholar 

  73. Feola TW, de Wit H, Richards JB (2000) Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114(4):838–848

    PubMed  CAS  Google Scholar 

  74. Bizarro L, Patel S, Murtagh C, Stolerman IP (2004) Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav Pharmacol 15(3):195–206

    PubMed  CAS  Google Scholar 

  75. Stanis JJ, Burns RM, Sherrill LK, Gulley JM (2008) Disparate cocaine-induced locomotion as a predictor of choice behavior in rats trained in a delay-discounting task. Drug Alcohol Depend 98(1–2):54–62

    PubMed  CAS  Google Scholar 

  76. Dalley JW, Theobald DE, Berry D et al (2005) Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology 30(3):525–537

    PubMed  CAS  Google Scholar 

  77. Pitts RC, McKinney AP (2005) Effects of methylphenidate and morphine on delay-discount functions obtained within sessions. J Exp Anal Behav 83(3):297–314

    PubMed  Google Scholar 

  78. Kieres AK, Hausknecht KA, Farrar AM, Acheson A, de Wit H, Richards JB (2004) Effects of morphine and naltrexone on impulsive decision making in rats. Psycho­pharmacology 173(1–2):167–174

    PubMed  CAS  Google Scholar 

  79. Pattij T, Schetters D, Janssen MC, Wiskerke J, Schoffelmeer AN (2009) Acute effects of morphine on distinct forms of impulsive behavior in rats. Psychopharmacology 205(3):489–502

    PubMed  CAS  Google Scholar 

  80. Olmstead MC, Hellemans KG, Paine TA (2006) Alcohol-induced impulsivity in rats: an effect of cue salience? Psychopharmacology 184(2):221–228

    PubMed  CAS  Google Scholar 

  81. Oliver YP, Ripley TL, Stephens DN (2009) Ethanol effects on impulsivity in two mouse strains: similarities to diazepam and ketamine. Psychopharmacology 204(4):679–692

    PubMed  CAS  Google Scholar 

  82. Oberlin BG, Grahame NJ (2009) High-alcohol preferring mice are more impulsive than low-alcohol preferring mice as measured in the delay discounting task. Alcohol Clin Exp Res 33(7):1294–1303

    PubMed  CAS  Google Scholar 

  83. Wilhelm CJ, Mitchell SH (2008) Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes. Genes Brain Behav 7(7):705–713

    PubMed  CAS  Google Scholar 

  84. Wilhelm CJ, Reeves JM, Phillips TJ, Mitchell SH (2007) Mouse lines selected for alcohol consumption differ on certain measures of impulsivity. Alcohol Clin Exp Res 31(11):1839–1845

    PubMed  Google Scholar 

  85. Bari A, Robbins, TW (2008) Unpublished findings

    Google Scholar 

  86. Counotte DS, Spijker S, Van de Burgwal LH et al (2009) Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology 34(2):299–306

    PubMed  CAS  Google Scholar 

  87. Semenova S, Stolerman IP, Markou A (2007) Chronic nicotine administration improves attention while nicotine withdrawal induces performance deficits in the 5-choice serial reaction time task in rats. Pharmacol Biochem Behav 87(3):360–368

    PubMed  CAS  Google Scholar 

  88. Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharma-cology 192(2):193–206

    PubMed  CAS  Google Scholar 

  89. Navarra R, Graf R, Huang Y et al (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuro-Psychopharmacol Biol Psychiatry 32(1):34–41

    CAS  Google Scholar 

  90. Robinson ES, Eagle DM, Mar AC et al (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33(5):1028–1037

    PubMed  CAS  Google Scholar 

  91. Waters KA, Burnham KE, O’Connor D, Dawson GR, Dias R (2005) Assessment of modafinil on attentional processes in a five-choice serial reaction time test in the rat. J Psychopharmacol (Oxford, Engl) 19(2):149–158

    CAS  Google Scholar 

  92. Thiebot MH, Le Bihan C, Soubrie P, Simon P (1985) Benzodiazepines reduce the tolerance to reward delay in rats. Psycho­pharmacology 86(1–2):147–152

    PubMed  CAS  Google Scholar 

  93. Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205(2):273–283

    PubMed  CAS  Google Scholar 

  94. Bert B, Harms S, Langen B, Fink H (2006) Clomipramine and selegiline: do they influence impulse control? J Vet Pharmacol Ther 29(1):41–47

    PubMed  CAS  Google Scholar 

  95. Cole SO (1990) Diazepam-induced impairment of a go-no go successive discrimination. Behav Neural Biol 53(3):371–377

    PubMed  CAS  Google Scholar 

  96. Wade TR, de Wit H, Richards JB (2000) Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology 150(1):90–101

    PubMed  CAS  Google Scholar 

  97. Floresco SB, Tse MT, Ghods-Sharifi S (2008) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33(8):1966–1979

    PubMed  CAS  Google Scholar 

  98. Perry JL, Stairs DJ, Bardo MT (2008) Impulsive choice and environmental enrichment: Effects of d-amphetamine and methylphenidate. Behav Brain Res 193(1):48–54

    PubMed  CAS  Google Scholar 

  99. Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2003) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology 170(3):320–331

    PubMed  CAS  Google Scholar 

  100. Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potenti­ation of synaptic strength in the ventral tegm­ental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24(34):7482–7490

    PubMed  CAS  Google Scholar 

  101. Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17(21):8491–8497

    PubMed  CAS  Google Scholar 

  102. Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2004) Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29(7):1331–1343

    PubMed  CAS  Google Scholar 

  103. Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 136(2):349–357

    PubMed  CAS  Google Scholar 

  104. Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 30(4):669–682

    PubMed  CAS  Google Scholar 

  105. Castellanos FX, Marvasti FF, Ducharme JL et al (2000) Executive function oculomotor tasks in girls with ADHD. J Am Acad Child Adolesc Psychiatry 39(5):644–650

    PubMed  CAS  Google Scholar 

  106. Hester R, Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 24(49):11017–11022

    PubMed  CAS  Google Scholar 

  107. Kaufman JN, Ross TJ, Stein EA, Garavan H (2003) Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci 23(21):7839–7843

    PubMed  CAS  Google Scholar 

  108. Noel X, Van der Linden M, D’ Acremont M et al (2007) Alcohol cues increase cognitive impulsivity in individuals with alcoholism. Psychopharmacology 192(2)):291–298

    PubMed  CAS  Google Scholar 

  109. Spinella M (2002) Correlations between orbitofrontal dysfunction and tobacco smoking. Addict Biol 7(4):381–384

    PubMed  Google Scholar 

  110. Quednow BB, Kuhn KU, Hoppe C et al (2007) Elevated impulsivity and impaired decision-making cognition in heavy users of MDMA (“Ecstasy”). Psychopharmacology 189(4):517–530

    PubMed  CAS  Google Scholar 

  111. Schachar R, Mota VL, Logan GD, Tannock R, Klim P (2000) Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. J Abnorm Child Psychol 28(3):227–235

    PubMed  CAS  Google Scholar 

  112. Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H (2005) A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol 114(2):216–222

    PubMed  Google Scholar 

  113. Li CS, Milivojevic V, Kemp K, Hong K, Sinha R (2006) Performance monitoring and stop signal inhibition in abstinent patients with cocaine dependence. Drug Alcohol Depend 85(3):205–212

    PubMed  CAS  Google Scholar 

  114. Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend 66(3):265–273

    PubMed  Google Scholar 

  115. Monterosso JR, Aron AR, Cordova X, Xu J, London ED (2005) Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend 79(2):273–277

    PubMed  Google Scholar 

  116. Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117(6):1302–1317

    PubMed  CAS  Google Scholar 

  117. Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science (New York, NY) 311(5762):861–863

    CAS  Google Scholar 

  118. Fresquet N, Angst MJ, Schleef C, Gobaille S, Sandner G (2007) Adrenergic drugs modify the level of noradrenaline in the insular cortex and alter extinction of conditioned taste aversion in rats. Behav Brain Res 178(1):39–46

    PubMed  CAS  Google Scholar 

  119. Jarrott B, Louis WJ, Summers RJ (1982) [3H]-Guanfacine: a radioligand that selectively labels high affinity alpha2-adrenoceptor sites in homogenates of rat brain. Br J Pharmacol 75(2):401–408

    PubMed  CAS  Google Scholar 

  120. Overtoom CC, Verbaten MN, Kemner C et al (2003) Effects of methylphenidate, desipramine, and L-dopa on attention and inhibition in children with Attention Deficit Hyperactivity Disorder. Behav Brain Res 145(1–2):7–15

    PubMed  CAS  Google Scholar 

  121. Brown VJ, Robbins TW (1991) Simple and choice reaction time performance following unilateral striatal dopamine depletion in the rat. Impaired motor readiness but preserved response preparation. Brain 114(Pt 1B):513–525

    PubMed  Google Scholar 

  122. Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) l-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107(2–3):394–404

    PubMed  CAS  Google Scholar 

  123. Eagle DM, Lehmann O, Theobald DE et al (2009) Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharma-cology 34(5):1311–1321

    PubMed  CAS  Google Scholar 

  124. Clark L, Roiser JP, Cools R, Rubinsztein DC, Sahakian BJ, Robbins TW (2005) Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology 182(4):570–578

    PubMed  CAS  Google Scholar 

  125. Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psycho­pharmacology 163(3–4):362–380

    PubMed  CAS  Google Scholar 

  126. Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9(3):361–380

    PubMed  CAS  Google Scholar 

  127. Wilkinson RT (1963) Interaction of Noise with Knowledge of Results and Sleep Deprivation. J Exp Psychol 66:332–337

    PubMed  CAS  Google Scholar 

  128. Beck LH, Bransome ED Jr, Mirsky AF, Rosvold HE, Sarason I (1956) A continuous performance test of brain damage. J Consult Psychol 20(5):343–350

    PubMed  CAS  Google Scholar 

  129. Bari A, Dalley JW, Robbins TW (2008) The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc 3(5):759–767

    PubMed  CAS  Google Scholar 

  130. Cole BJ, Robbins TW (1989) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res 33(2):165–179

    PubMed  CAS  Google Scholar 

  131. Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharma-cology 191(3):587–598

    PubMed  CAS  Google Scholar 

  132. Bymaster FP, Katner JS, Nelson DL et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5):699–711

    PubMed  CAS  Google Scholar 

  133. Blondeau C, Dellu-Hagedorn F (2007) Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry 61(12):1340–1350

    PubMed  Google Scholar 

  134. Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharma-cology 133(4):329–342

    PubMed  CAS  Google Scholar 

  135. Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology 91(4):458–466

    PubMed  CAS  Google Scholar 

  136. Robbins TW, Everitt BJ, Marston HM, Wilkinson J, Jones GH, Page KJ (1989) Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav Brain Res 35(3):221–240

    PubMed  CAS  Google Scholar 

  137. Muir JL, Everitt BJ, Robbins TW (1994) AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J Neurosci 14(4):2313–2326

    PubMed  CAS  Google Scholar 

  138. McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22(5):1905–1913

    PubMed  CAS  Google Scholar 

  139. Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW (2004) Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex 14(8):922–932

    PubMed  Google Scholar 

  140. Dalley JW, Fryer TD, Brichard L et al (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science (New York, NY) 315(5816):1267–1270

    CAS  Google Scholar 

  141. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    PubMed  CAS  Google Scholar 

  142. Dawe S, Loxton NJ (2004) The role of impulsivity in the development of substance use and eating disorders. Neurosci Biobehav Rev 28(3):343–351

    PubMed  Google Scholar 

  143. Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science (New York, NY) 245(4925):1511–1513

    CAS  Google Scholar 

  144. Verdejo-Garcia A, Perez-Garcia M (2007) Ecological assessment of executive functions in substance dependent individuals. Drug Alcohol Depend 90(1):48–55

    PubMed  Google Scholar 

  145. Mantsch JR, Ho A, Schlussman SD, Kreek MJ (2001) Predictable individual differences in the initiation of cocaine self-administration by rats under extended-access conditions are dose-dependent. Psychopharmacology 157(1):31–39

    PubMed  CAS  Google Scholar 

  146. Bardo MT, Donohew RL, Harrington NG (1996) Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res 77(1–2):23–43

    PubMed  CAS  Google Scholar 

  147. Regier DA, Farmer ME, Rae DS et al (1990) Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA 264(19):2511–2518

    PubMed  CAS  Google Scholar 

  148. McGue M, Iacono WG, Legrand LN, Malone S, Elkins I (2001) Origins and consequences of age at first drink. I. Associations with ­substance-use disorders, disinhibitory behavior and psychopathology, and P3 amplitude. Alcohol Clin Exp Res 25(8):1156–1165

    PubMed  CAS  Google Scholar 

  149. White HR, Pandina RJ, Chen PH (2002) Developmental trajectories of cigarette use from early adolescence into young adulthood. Drug Alcohol Depend 65(2):167–178

    PubMed  Google Scholar 

  150. Hesselbrock VM, Hesselbrock MN, Stabenau JR (1985) Alcoholism in men patients subtyped by family history and antisocial personality. J Stud Alcohol 46(1):59–64

    PubMed  CAS  Google Scholar 

  151. Sher KJ, Trull TJ (1994) Personality and disinhibitory psychopathology: alcoholism and antisocial personality disorder. J Abnorm Psychol 103(1):92–102

    PubMed  CAS  Google Scholar 

  152. Reynolds B, Patak M, Shroff P (2007) Adolescent smokers rate delayed rewards as less certain than adolescent nonsmokers. Drug Alcohol Depend 90(2–3):301–303

    PubMed  Google Scholar 

  153. Eaves L, Eysenck H (1975) The nature of extraversion: a genetical analysis. J Pers Soc Psychol 32(1):102–112

    PubMed  CAS  Google Scholar 

  154. Sher KJ, Bartholow BD, Wood MD (2000) Personality and substance use disorders: a prospective study. J Consult Clin Psychol 68(5):818–829

    PubMed  CAS  Google Scholar 

  155. Dawe S, Gullo MJ, Loxton NJ (2004) Reward drive and rash impulsiveness as dimensions of impulsivity: implications for substance misuse. Addict Behav 29(7):1389–1405

    PubMed  Google Scholar 

  156. Verheul R (2001) Co-morbidity of personality disorders in individuals with substance use disorders. Eur Psychiatry 16(5):274–282

    PubMed  CAS  Google Scholar 

  157. Verheul R, van den Brink W, Geerlings P (1999) A three-pathway psychobiological model of craving for alcohol. Alcohol Alcohol (Oxford, Oxfordshire) 34(2):197–222

    CAS  Google Scholar 

  158. Khantzian EJ (1985) The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry 142(11):1259–1264

    PubMed  CAS  Google Scholar 

  159. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science (New York, NY) 282(5387):298–300

    CAS  Google Scholar 

  160. Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry 65(10):851–856

    PubMed  CAS  Google Scholar 

  161. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond 363(1507):3125–3135

    Google Scholar 

  162. Groman SM, James AS, Jentsch JD (2008) Poor response inhibition: at the nexus between substance abuse and attention deficit/hyperactivity disorder. Neurosci Biobehav Rev 33(5):690–698

    PubMed  Google Scholar 

  163. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    PubMed  CAS  Google Scholar 

  164. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156(1):11–18

    PubMed  CAS  Google Scholar 

  165. Grant S, London ED, Newlin DB et al (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93(21):12040–12045

    PubMed  CAS  Google Scholar 

  166. Matochik JA, London ED, Eldreth DA, Cadet JL, Bolla KI (2003) Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 19(3):1095–1102

    PubMed  Google Scholar 

  167. Ersche KD, Roiser JP, Robbins TW, Sahakian BJ (2008) Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psycho­pharmacology 197(3):421–431

    PubMed  CAS  Google Scholar 

  168. Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci 8(11):1458–1463

    PubMed  CAS  Google Scholar 

  169. Volkow ND, Hitzemann R, Wang GJ et al (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse (New York, NY) 11(3):184–190

    CAS  Google Scholar 

  170. Dalley JW, Laane K, Theobald DE et al (2007) Enduring deficits in sustained visual attention during withdrawal of intravenous methylenedioxymethamphetamine self-administration in rats: results from a comparative study with d-amphetamine and methamphetamine. Neu­ropsychopharmacology 32(5):1195–1206

    PubMed  CAS  Google Scholar 

  171. George O, Mandyam CD, Wee S, Koob GF (2008) Extended access to cocaine self-administration produces long-lasting prefrontal cortex-dependent working memory impairments. Neuropsychopharmacology 33(10):2474–2482

    PubMed  CAS  Google Scholar 

  172. Briand LA, Gross JP, Robinson TE (2008) Impaired object recognition following prolonged withdrawal from extended-access cocaine self-administration. Neuroscience 155(1):1–6

    PubMed  CAS  Google Scholar 

  173. Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19(7):1997–2002

    PubMed  Google Scholar 

  174. Calu DJ, Stalnaker TA, Franz TM, Singh T, Shaham Y, Schoenbaum G (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Memory (Cold Spring Harbor, NY) 14(5):325–328

    Google Scholar 

  175. Jentsch JD, Olausson P, De La Garza R 2nd, Taylor JR (2002) Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26(2):183–190

    PubMed  CAS  Google Scholar 

  176. Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90(2):250–260

    PubMed  CAS  Google Scholar 

  177. Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29(4):192–199

    PubMed  CAS  Google Scholar 

  178. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science (New York, NY) 292(5526):2499–2501

    CAS  Google Scholar 

  179. Pothuizen HH, Jongen-Relo AL, Feldon J, Yee BK (2005) Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur J Neurosci 22(10):2605–2616

    PubMed  Google Scholar 

  180. Mobini S, Body S, Ho MY et al (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 160(3):290–298

    PubMed  CAS  Google Scholar 

  181. Rudebeck PH, Walton ME, Smyth AN, Bannerman DM, Rushworth MF (2006) Separate neural pathways process different decision costs. Nat Neurosci 9(9):1161–1168

    PubMed  CAS  Google Scholar 

  182. Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24(20):4718–4722

    PubMed  CAS  Google Scholar 

  183. Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146(1–2):105–119

    PubMed  CAS  Google Scholar 

  184. Christakou A, Robbins TW, Everitt BJ (2001) Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav Neurosci 115(4):812–825

    PubMed  CAS  Google Scholar 

  185. Robinson ES, Eagle DM, Economidou D et al (2008) Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res doi:10.1016/j.bbr.2008.09.021.

  186. Volkow ND, Wang GJ, Fowler JS et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386(6627):830–833

    PubMed  CAS  Google Scholar 

  187. Wu LT, Pilowsky DJ, Schlenger WE, Galvin DM (2007) Misuse of methamphetamine and prescription stimulants among youths and young adults in the community. Drug Alcohol Depend 89(2–3):195–205

    PubMed  Google Scholar 

  188. Adler LA, Spencer TJ, Williams DW, Moore RJ, Michelson D (2008) Long-term, open-label safety and efficacy of atomoxetine in adults with ADHD: final report of a 4-year study. J Atten Disord 12(3):248–253

    PubMed  Google Scholar 

  189. Biederman J, Spencer TJ, Newcorn JH et al (2007) Effect of comorbid symptoms of oppositional defiant disorder on responses to atomoxetine in children with ADHD: a meta-analysis of controlled clinical trial data. Psychopharmacology 190(1):31–41

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work reviewed in this chapter was funded by grants from the MRC (G0401068, G0600196, G0701500, G0802729), the Wellcome Trust (076274/z/04/z) and by a consortium joint award from the MRC and Wellcome Trust (G0001354) within the Cambridge University Behavioural and Clinical Neuroscience Institute. AB was supported by a studentship from the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Dalley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bari, A., Robbins, T.W., Dalley, J.W. (2011). Impulsivity. In: Olmstead, M. (eds) Animal Models of Drug Addiction. Neuromethods, vol 53. Humana Press. https://doi.org/10.1007/978-1-60761-934-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-934-5_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-933-8

  • Online ISBN: 978-1-60761-934-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics