Skip to main content

The 3xTg-AD Mouse Model: Reproducing and Modulating Plaque and Tangle Pathology

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

Alzheimer’s disease (AD) is a devastating disease, and the most common form of dementia to afflict the elderly population. The disease causes a slow but progressive neurodegeneration, leading to memory impairments and dysfunction in other cognitive domains. The molecular mechanism of disease development and progression has not yet been fully established, nor have any cures or effective, long-lasting treatments been developed. Various transgenic mouse models of AD have proven to be invaluable tools for elucidating disease mechanisms and for providing a platform to evaluate therapeutic strategies. In this chapter, we discuss findings from the 3xTg-AD mouse model, which develops both plaque and tangle pathologies, the two major pathological hallmarks of AD. Studies using the 3xTg-AD mice have revealed a strong interaction between amyloid-beta (Aβ) and tau, which synergistically drive the pathogenesis in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ferri CP, Prince M, Brayne C, et al. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117.

    Article  PubMed  Google Scholar 

  2. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159.

    Article  PubMed  CAS  Google Scholar 

  3. Selkoe DJ (2003) Toward a remembrance of things past: deciphering Alzheimer disease. Harvey Lect 99:23–45.

    PubMed  Google Scholar 

  4. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388.

    Article  PubMed  CAS  Google Scholar 

  5. Scheuner D, Eckman C, Jensen M, et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870.

    Article  PubMed  CAS  Google Scholar 

  6. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185.

    Article  PubMed  CAS  Google Scholar 

  7. Rovelet-Lecrux A, Hannequin D, Raux G, et al. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26.

    Article  PubMed  CAS  Google Scholar 

  8. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135.

    Article  PubMed  CAS  Google Scholar 

  9. Games D, Buttini M, Kobayashi D, Schenk D, Seubert P (2006) Mice as models: transgenic approaches and Alzheimer’s disease. J Alzheimers Dis 9:133–149.

    PubMed  CAS  Google Scholar 

  10. Games D, Adams D, Alessandrini R, et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527.

    Article  PubMed  CAS  Google Scholar 

  11. Hsiao K, Chapman P, Nilsen S, et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102.

    Article  PubMed  CAS  Google Scholar 

  12. Sturchler-Pierrat C, Abramowski D, Duke M, et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94:13287–13292.

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki N, Cheung TT, Cai XD, et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264:1336–1340.

    Article  PubMed  CAS  Google Scholar 

  14. Duff K, Eckman C, Zehr C, et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713.

    Article  PubMed  CAS  Google Scholar 

  15. Borchelt DR, Ratovitski T, van Lare J, et al. (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–945.

    Article  PubMed  CAS  Google Scholar 

  16. Holcomb L, Gordon MN, McGowan E, et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis J, Dickson DW, Lin WL, et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491.

    Article  PubMed  CAS  Google Scholar 

  18. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495.

    Article  PubMed  CAS  Google Scholar 

  19. Oddo S, Caccamo A, Shepherd JD, et al. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421.

    Article  PubMed  CAS  Google Scholar 

  20. Goedert M (2005) Tau gene mutations and their effects. Mov Disord 20(Suppl 12):S45–S52.

    Article  PubMed  Google Scholar 

  21. Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3–9.

    Article  PubMed  CAS  Google Scholar 

  22. Shie FS, LeBoeuf RC, Jin LW (2003) Early intraneuronal Abeta deposition in the hippocampus of APP transgenic mice. Neuroreport 14:123–129.

    Article  PubMed  CAS  Google Scholar 

  23. Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492.

    PubMed  CAS  Google Scholar 

  24. Oddo S, Caccamo A, Tran L, et al. (2006) Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease: a link between Abeta and tau pathology. J Biol Chem 281:1599–1604.

    Article  PubMed  CAS  Google Scholar 

  25. Oddo S, Caccamo A, Smith IF, Green KN, LaFerla FM (2006) A dynamic relationship between intracellular and extracellular pools of Abeta. Am J Pathol 168:184–194.

    Article  PubMed  CAS  Google Scholar 

  26. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853.

    Article  PubMed  CAS  Google Scholar 

  27. Jicha GA, Bowser R, Kazam IG, Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48:128–132.

    Article  PubMed  CAS  Google Scholar 

  28. Scheff SW, Scott SA, DeKosky ST (1991) Quantitation of synaptic density in the septal nuclei of young and aged Fischer 344 rats. Neurobiol Aging 12:3–12.

    Article  PubMed  CAS  Google Scholar 

  29. Walsh DM, Klyubin I, Fadeeva JV, et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

    Article  PubMed  CAS  Google Scholar 

  30. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688.

    Article  PubMed  CAS  Google Scholar 

  31. Billings LM, Green KN, McGaugh JL, LaFerla FM (2007) Learning decreases A beta*56 and tau pathology and ameliorates behavioral decline in 3xTg-AD mice. J Neurosci 27:751–761.

    Article  PubMed  CAS  Google Scholar 

  32. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39:333–340.

    Article  PubMed  CAS  Google Scholar 

  33. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease-a double-edged sword. Neuron 35:419–432.

    Article  PubMed  CAS  Google Scholar 

  34. Akiyama H, Schwab C, Kondo H, et al. (1996) Granules in glial cells of patients with Alzheimer’s disease are immunopositive for C-terminal sequences of beta-amyloid protein. Neurosci Lett 206:169–172.

    Article  PubMed  CAS  Google Scholar 

  35. Funato H, Yoshimura M, Yamazaki T, et al. (1998) Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. Am J Pathol 152:983–992.

    PubMed  CAS  Google Scholar 

  36. Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2:23.

    Article  PubMed  Google Scholar 

  37. Parvathy S, Rajadas J, Ryan H, Vaziri S, Anderson L, Murphy GM, Jr (2009) Abeta peptide conformation determines uptake and interleukin-1alpha expression by primary microglial cells. Neurobiol Aging 30(11):1792–1804.

    Article  PubMed  CAS  Google Scholar 

  38. Lindberg C, Selenica ML, Westlind-Danielsson A, Schultzberg M (2005) Beta-amyloid protein structure determines the nature of cytokine release from rat microglia. J Mol Neurosci 27:1–12.

    Article  PubMed  CAS  Google Scholar 

  39. Griffin WS, Stanley LC, Ling C, et al. (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86:7611–7615.

    Article  PubMed  CAS  Google Scholar 

  40. Patel AJ, Jen A, Wickenden C, Jen LS, Gentleman SM, de Silva HA (1997) Glia-derived cytokines and the biogenesis of amyloid plaques in Alzheimer’s disease. Mol Psychiatry 2:130–132.

    Article  PubMed  CAS  Google Scholar 

  41. Hesselgesser J, Horuk R (1999) Chemokine and chemokine receptor expression in the ­central nervous system. J Neurovirol 5:13–26.

    Article  PubMed  CAS  Google Scholar 

  42. Lukiw WJ, Bazan NG (2000) Neuroinflam­matory signaling upregulation in Alzheimer’s disease. Neurochem Res 25:1173–1184.

    Article  PubMed  CAS  Google Scholar 

  43. Sheng JG, Zhu SG, Jones RA, Griffin WS, Mrak RE (2000) Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol 163:388–391.

    Article  PubMed  CAS  Google Scholar 

  44. Hardy J (2006) Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 3:71–73.

    Article  PubMed  CAS  Google Scholar 

  45. Schenk D, Barbour R, Dunn W, et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177.

    Article  PubMed  CAS  Google Scholar 

  46. Morgan D, Diamond DM, Gottschall PE, et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985.

    Article  PubMed  CAS  Google Scholar 

  47. Janus C, Pearson J, McLaurin J, et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982.

    Article  PubMed  CAS  Google Scholar 

  48. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332.

    Article  PubMed  CAS  Google Scholar 

  49. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG (2002) Proteasomal degradation of tau protein. J Neurochem 83:176–185.

    Article  PubMed  CAS  Google Scholar 

  50. Goldbaum O, Oppermann M, Handschuh M, et al. (2003) Proteasome inhibition stabilizes tau inclusions in oligodendroglial cells that occur after treatment with okadaic acid. J Neurosci 23:8872–8880.

    PubMed  CAS  Google Scholar 

  51. Tseng BP, Green KN, Chan JL, Blurton-Jones M, Laferla FM (2007) Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29(11):1607–1618.

    PubMed  Google Scholar 

  52. Nicoll JA, Barton E, Boche D, et al. (2006) Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 65:1040–1048.

    Article  PubMed  CAS  Google Scholar 

  53. Orgogozo JM, Gilman S, Dartigues JF, et al. (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54.

    PubMed  CAS  Google Scholar 

  54. Lemere CA, Maier M, Peng Y, Jiang L, Seabrook TJ (2007) Novel Abeta immunogens: is shorter better? Curr Alzheimer Res 4:427–436.

    Article  PubMed  CAS  Google Scholar 

  55. Frazer ME, Hughes JE, Mastrangelo MA, Tibbens JL, Federoff HJ, Bowers WJ (2008) Reduced pathology and improved behavioral performance in Alzheimer’s disease mice vaccinated with HSV amplicons expressing amyloid-beta and interleukin-4. Mol Ther 16:845–853.

    Article  PubMed  CAS  Google Scholar 

  56. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403.

    Article  PubMed  CAS  Google Scholar 

  57. McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T (1984) Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology 34:741–745.

    PubMed  CAS  Google Scholar 

  58. Ulrich J, Johannson-Locher G, Seiler WO, Stahelin HB (1997) Does smoking protect from Alzheimer’s disease? Alzheimer-type changes in 301 unselected brains from patients with known smoking history. Acta Neuropathol 94:450–454.

    Article  PubMed  CAS  Google Scholar 

  59. Court JA, Johnson M, Religa D, et al. (2005) Attenuation of Abeta deposition in the entorhinal cortex of normal elderly individuals associated with tobacco smoking. Neuropathol Appl Neurobiol 31:522–535.

    Article  PubMed  CAS  Google Scholar 

  60. Nordberg A, Hellstrom-Lindahl E, Lee M, et al. (2002) Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J Neurochem 81:655–658.

    Article  PubMed  CAS  Google Scholar 

  61. Oddo S, Caccamo A, Green KN, et al. (2005) Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102:3046–3051.

    Article  PubMed  CAS  Google Scholar 

  62. Svensson AL, Alafuzoff I, Nordberg A (1992) Characterization of muscarinic receptor subtypes in Alzheimer and control brain cortices by selective muscarinic antagonists. Brain Res 596:142–148.

    Article  PubMed  CAS  Google Scholar 

  63. Fisher A (2000) Therapeutic strategies in Alzheimer’s disease: M1 muscarinic agonists. Jpn J Pharmacol 84:101–112.

    Article  PubMed  CAS  Google Scholar 

  64. Fisher A, Pittel Z, Haring R, et al. (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 20:349–356.

    Article  PubMed  CAS  Google Scholar 

  65. Fisher A, Brandeis R, Bar-Ner RH, et al. (2002) AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 19:145–153.

    Article  PubMed  CAS  Google Scholar 

  66. Caccamo A, Oddo S, Billings LM, et al. (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49:671–682.

    Article  PubMed  CAS  Google Scholar 

  67. Caccamo A, Oddo S, Tran LX, LaFerla FM (2007) Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 170:1669–1675.

    Article  PubMed  CAS  Google Scholar 

  68. Lambert MP, Barlow AK, Chromy BA, et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453.

    Article  PubMed  CAS  Google Scholar 

  69. Snyder EM, Nong Y, Almeida CG, et al. (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  70. Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM (2006) Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281:39413–39423.

    Article  PubMed  CAS  Google Scholar 

  71. Roberson ED, Scearce-Levie K, Palop JJ, et al. (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754.

    Article  PubMed  CAS  Google Scholar 

  72. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002) Exercise, experience and the aging brain. Neurobiol Aging 23:941–955.

    Article  PubMed  Google Scholar 

  73. Fillit HM, Butler RN, O’Connell AW, et al. (2002) Achieving and maintaining cognitive vitality with aging. Mayo Clin Proc 77:681–696

    Article  PubMed  Google Scholar 

  74. Roozendaal B, Phillips RG, Power AE, Brooke SM, Sapolsky RM, McGaugh JL (2001) Memory retrieval impairment induced by hippocampal CA3 lesions is blocked by adrenocortical suppression. Nat Neurosci 4:1169–1171.

    Article  PubMed  CAS  Google Scholar 

  75. Davis KL, Davis BM, Greenwald BS, et al. (1986) Cortisol and Alzheimer’s disease, I: basal studies. Am J Psychiatry 143:300–305.

    PubMed  CAS  Google Scholar 

  76. Masugi F, Ogihara T, Sakaguchi K, et al. (1989) High plasma levels of cortisol in patients with senile dementia of the Alzheimer’s type. Methods Find Exp Clin Pharmacol 11:707–710.

    PubMed  CAS  Google Scholar 

  77. Swanwick GR, Kirby M, Bruce I, et al. (1998) Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer’s disease: lack of association between longitudinal and cross-sectional findings. Am J Psychiatry 155:286–159.

    PubMed  CAS  Google Scholar 

  78. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26:9047–9056.

    Article  PubMed  CAS  Google Scholar 

  79. Bazan NG, Scott BL (1990) Dietary omega-3 fatty acids and accumulation of docosahexaenoic acid in rod photoreceptor cells of the retina and at synapses. Ups J Med Sci Suppl 48:97–107.

    PubMed  CAS  Google Scholar 

  80. Calon F, Lim GP, Yang F, et al. (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645.

    Article  PubMed  CAS  Google Scholar 

  81. Lim GP, Calon F, Morihara T, et al. (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25:3032–3040.

    Article  PubMed  CAS  Google Scholar 

  82. Green KN, Martinez-Coria H, Khashwji H, et al. (2007) Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 27:4385–4395.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sy, M., Kitazawa, M., LaFerla, F. (2011). The 3xTg-AD Mouse Model: Reproducing and Modulating Plaque and Tangle Pathology. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics