Skip to main content

Eyeblink Conditioning in Animal Models and Humans

  • Protocol
  • First Online:
Book cover Animal Models of Behavioral Analysis

Part of the book series: Neuromethods ((NM,volume 50))

Abstract

The knowledge base on behavioral parameters and neural substrates involved in eyeblink classical conditioning is extensive and continues to expand. The close parallels in behavior and neurobiology in mammalian species including humans make eyeblink conditioning an ideal paradigm for translational studies. Applications presented in this chapter include eyeblink conditioning’s utility in the investigation of severe neurological conditions at the beginning and end of the life span: fetal alcohol syndrome (FAS) and Alzheimer’s disease (AD). Recent studies in children with FAS demonstrate that delay eyeblink conditioning has a high sensitivity for diagnosis of prenatal exposure to alcohol. Contributing to the understanding of the neural mechanisms in the cerebellum damaged by prenatal alcohol exposure is a developmental rat model tested with eyeblink classical conditioning. Disruption of the hippocampal cholinergic system is associated with impaired delay eyeblink conditioning in normal rabbits. This result led to the hypothesis that the hippocampal cholinergic disruption observed early in AD might cause delay eyeblink conditioning to be impaired. This hypothesis was confirmed, and delay eyeblink conditioning has been demonstrated to have high sensitivity for AD. The hypercholesterolemic rabbit model of AD shows many neuropathologies of human AD and is impaired in delay eyeblink conditioning. Both the rat FAS and the rabbit AD models have demonstrated utility in the elucidation of disease mechanisms and the identification of treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson RF (2005) In search of memory traces. Annu Rev Psychol 56:1–23

    Article  PubMed  Google Scholar 

  2. Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732–755

    Article  PubMed  CAS  Google Scholar 

  3. Woodruff-Pak DS, Disterhoft JF (2008) Where is the trace in trace conditioning? Trends Neurosci 31:105–112

    Article  PubMed  CAS  Google Scholar 

  4. Logan CG, Grafton ST (1995) Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proc Natl Acad Sci USA 92:7500–7504

    Article  PubMed  CAS  Google Scholar 

  5. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE (2008) Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA 105:8108–8113

    Article  PubMed  CAS  Google Scholar 

  6. Papka M, Ivry RB, Woodruff-Pak DS (1995) Selective disruption of eyeblink classical conditioning by concurrent tapping. Neuroreport 6:1493–1497

    Article  PubMed  CAS  Google Scholar 

  7. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, Kolb FP (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning: a review. Cortex 46:845–857

    Article  PubMed  Google Scholar 

  8. Herbert JS, Eckerman CO, Stanton ME (2003) The ontogeny of human learning in delay, long-delay, and trace eyeblink conditioning. Behav Neurosci 117:1196–1210

    Article  PubMed  Google Scholar 

  9. Abel EL, Sokol RJ (1986) Fetal alcohol syndrome is now leading cause of mental retardation. Lancet 2:1222

    Article  PubMed  CAS  Google Scholar 

  10. Clarren SK, Smith DW (1978) The fetal alcohol syndrome. N Engl J Med 298:1063–1067

    Article  PubMed  CAS  Google Scholar 

  11. Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 2:999–1001

    Article  Google Scholar 

  12. Jones KL, Smith DW, Ulleland CN, Streissguth AP (1973) Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1:1267–1271

    Article  PubMed  CAS  Google Scholar 

  13. Riley EP, McGee CL (2005) Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Exp Biol Med 230:357–365

    CAS  Google Scholar 

  14. Sampson PD, Streissguth AP, Bookstein FL, Little RE, Clarren SK, Dehaene P, Hanson JW, Graham JM (1997) Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology 56:317–326

    Article  PubMed  CAS  Google Scholar 

  15. Hoyme HE, May PA, Kalberg WO, Kodituwakku P, Gossage JP, Trujillo PM, Buckley DG, Miller JH, Aragon AS, Khaole N, Viljoen DL, Jones KL, Robinson LK (2005) A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 Institute of Medicine criteria. Pediatrics 115:39–47

    Article  PubMed  Google Scholar 

  16. Manning MA, Hoyme HE (2007) Fetal alcohol spectrum disorders: a practical clinical approach to diagnosis. Neurosci Biobehav Rev 31:230–238

    Article  PubMed  CAS  Google Scholar 

  17. Coles CD, Platzman KA, Lynch ME, Freides D (2002) Auditory and visual sustained attention in adolescents prenatally exposed to alcohol. Alcohol Clin Exp Res 26:263–271

    Article  PubMed  Google Scholar 

  18. Hamilton DA, Kodituwakku P, Sutherland RJ, Savage DD (2003) Children with fetal alcohol syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behav Brain Res 143:85–94

    Article  PubMed  Google Scholar 

  19. Mattson SN, Riley EP (1998) Neuropsychological comparison of alcohol-exposed children with or without physical features of fetal alcohol syndrome. Neuropsychology 12:146–153

    Article  PubMed  CAS  Google Scholar 

  20. Mattson SN, Goodman AM, Caine C, Delis DC, Riley EP (1999) Executive functioning in children with heavy prenatal alcohol exposure. Alcohol Clin Exp Res 23:1808–1815

    Article  PubMed  CAS  Google Scholar 

  21. Schonfeld AM, Mattson SN, Lang AR, Delis DC, Riley EP (2001) Verbal and nonverbal fluency in children with heavy prenatal alcohol exposure. J Stud Alcohol 62:239–246

    PubMed  CAS  Google Scholar 

  22. Koren G, Nulman I, Chudley AE, Loocke C (2003) Fetal alcohol spectrum disorder. CMAJ 169:1181–1185

    PubMed  Google Scholar 

  23. Lupton C, Burd L, Harwood R (2004) Cost of fetal alcohol spectrum disorders. Am J Med Genet C Semin Med Genet 127:42–50

    Article  Google Scholar 

  24. Mattson SN, Riley EO, Jernigan TL, Ehlers CL, Delis DC, Jones KL, Stern C, Johnson KA, Hesselink JR, Bellugi U (1992) Fetal alcohol syndrome: a case report of neuropsychological, MRI, and EEG assessment of two children. Alcohol Clin Exp Res 16:1001–1003

    Article  PubMed  CAS  Google Scholar 

  25. Mattson SN, Schoenfeld AM, Riley EP (2001) Teratogenic effects of alcohol on brain and behaviour. Alcohol Res Health 25:185–191

    PubMed  CAS  Google Scholar 

  26. Swayze VW, Johnson VP, Hanson JW, Piven J, Sato Y, Giedd JN, Mosnik D, Andreasen NC (1997) Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics 99:232–240

    Article  PubMed  Google Scholar 

  27. Archibald SL, Fennema-Notestine C, Gamst A, Riley EP, Mattson SN, Jernigan TL (2001) Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol 43:148–154

    PubMed  CAS  Google Scholar 

  28. Autti-Rämo I, Autti T, Korkman M, Kettunen S, Salonen O, Valanne L (2002) MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol 44:98–106

    Article  PubMed  Google Scholar 

  29. Bookstein FL, Streissguth AP, Connor PD, Sampson PD (2006) Damage to the human cerebellum from prenatal alcohol exposure: the anatomy of a simple biometrical explanation. Anat Rec 289B:195–209

    Article  Google Scholar 

  30. O’Hare ED, Kan E, Yoshii J, Mattson SN, Riley EP, Thompson PM, Toga AW, Sowell ER (2005) Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport 16:1285–1290

    Article  PubMed  Google Scholar 

  31. Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL (1996) Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I–V. Alcohol Clin Exp Res 20:31–34

    Article  PubMed  CAS  Google Scholar 

  32. Connor PD, Sampson PD, Streissguth AP, Bookstein FL, Barr HM (2006) Effects of prenatal alcohol exposure on fine motor coordination and balance: a study of two adult samples. Neuropsychologia 44: 744–751

    Article  PubMed  Google Scholar 

  33. Mattson SN, Riley EP (1998) A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22: 279–294

    Article  PubMed  CAS  Google Scholar 

  34. Roebuck TM, Simmons RW, Mattson SN, Riley EP (1998) Prenatal exposure to alcohol affects the ability to maintain postural balance. Alcohol Clin Exp Res 22:252–258

    Article  PubMed  CAS  Google Scholar 

  35. Green JT (2004) The effects of ethanol on the developing cerebellum and eyeblink classical conditioning. Cerebellum 3:178–187

    Article  PubMed  CAS  Google Scholar 

  36. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  PubMed  CAS  Google Scholar 

  37. Cragg B, Philips S (1985) Natural loss of Purkinje cells during development and increased loss with alcohol. Brain Res 325:151–160

    Article  PubMed  CAS  Google Scholar 

  38. Maier SE, West JR (2001) Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol 23:49–57

    Article  PubMed  CAS  Google Scholar 

  39. Marcussen BL, Goodlett CR, Mahoney JC, West JR (1994) Developing rat Purkinje cells are more vulnerable to alcohol-induced depletion during differentiation than during neurogenesis. Alcohol 11:147–156

    Article  PubMed  CAS  Google Scholar 

  40. Maier SE, Miller JA, Blackwell JM, West JR (1999) Fetal alcohol exposure and temporal vulnerability: regional differences in cell loss as a function of the timing of binge-like alcohol exposure during brain development. Alcohol Clin Exp Res 23:726–734

    PubMed  CAS  Google Scholar 

  41. Pierce DP, Goodlett CR, West JR (1989) Differential neuronal loss following early postnatal alcohol exposure. Teratology 40:113–126

    Article  PubMed  CAS  Google Scholar 

  42. Bonthius DJ, West JR (1990) Alcohol-induced neuronal loss in developing rats: increased brain damage with binge exposure. Alcohol Clin Exp Res 14:107–118

    Article  PubMed  CAS  Google Scholar 

  43. Bonthius DJ, West JR (1991) Permanent neuronal deficits in rats exposed to alcohol during the brain growth spurt. Teratology 44:147–163

    Article  PubMed  CAS  Google Scholar 

  44. Bauer-Moffett C, Altman J (1977) The effect of ethanol chronically administered to preweanling rats on cerebellar development: a morphological study. Brain Res 119: 249–268

    Article  PubMed  CAS  Google Scholar 

  45. Ryabinin AE, Cole M, Bloom FE, Wilson MC (1995) Exposure of neonatal rats to alcohol by vapor inhalation demonstrates specificity of microcephaly and Purkinje cell loss but not astrogliosis. Alcohol Clin Exp Res 19:784–791

    Article  PubMed  CAS  Google Scholar 

  46. Goodlett CR, Peterson SD, Lundahl KR, Pearlman AD (1997) Binge-like alcohol exposure of neonatal rats via intragastric intubation induces both Purkinje cell loss and cortical astrogliosis. Alcohol Clin Exp Res 21:1010–1017

    Article  PubMed  CAS  Google Scholar 

  47. Pierce DR, Serbus DC, Light KE (1993) Intragastric intubations of alcohol during postnatal development of rats results in selective cell loss in the cerebellum. Alcohol Clin Exp Res 17:1275–1280

    Article  PubMed  CAS  Google Scholar 

  48. Light KE, Belcher SM, Pierce DR (2002) Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Neuroscience 114:327–337

    Article  PubMed  CAS  Google Scholar 

  49. Goodlett CR, Pearlman AD, Lundahl KR (1998) Binge neonatal alcohol intubations induce dose-dependent loss of Purkinje cells. Neurotoxicol Teratol 20:285–292

    Article  PubMed  CAS  Google Scholar 

  50. Goodlett CR, Marcussen BL, West JR (1990) A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss. Alcohol 7:107–114

    Article  PubMed  CAS  Google Scholar 

  51. Goodlett CR, Lundahl KR (1996) Temporal determinants of neonatal alcohol-induced cerebellar damage and motor performance deficits. Pharmacol Biochem Behav 55: 531–540

    Article  PubMed  CAS  Google Scholar 

  52. Klintsova AY, Cowell RM, Swain RA, Napper RMA, Goodlett CR, Greenough WT (1998) Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats I: behavioral results. Brain Res 800: 48–61

    Article  PubMed  CAS  Google Scholar 

  53. Thomas JD, Goodlett CR, West JR (1998) Alcohol-induced Purkinje cell loss depends on developmental timing of alcohol exposure and correlates with motor performance. Dev Brain Res 105:159–166

    Article  CAS  Google Scholar 

  54. Christian KM, Thompson RF (2003) Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 11:427–455

    Article  Google Scholar 

  55. Goodlett CR, Stanton ME, Steinmetz JE (2000) Alcohol-induced damage to the developing brain: functional approaches using classical eyeblink conditioning. In: Woodruff-Pak DS, Steinmetz JE (eds.) Eyeblink classical conditioning, volume 2: animal models. Kluwer Academic Publishers, Boston, pp 135–153

    Google Scholar 

  56. Gormezano I, Kehoe EJ, Marshall BS (1983) Twenty years of classical conditioning with the rabbit. Prog Psychobio Physiol Psychol 10:197–275

    Google Scholar 

  57. Skelton RW (1988) Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats. Behav Neurosci 102:586–590

    Article  PubMed  CAS  Google Scholar 

  58. Stanton ME, Freeman JH, Skelton RW (1992) Eyeblink conditioning in the developing rat. Behav Neurosci 106:657–665

    Article  PubMed  CAS  Google Scholar 

  59. Freeman JH, Spencer CO, Skelton RW, Stanton ME (1993) Ontogeny of eyeblink conditioning in the rat: effects of US intensity and interstimulus interval on delay conditioning. Psychobiology 21:233–242

    Google Scholar 

  60. Freeman JH, Barone S, Stanton ME (1995a) Disruption of cerebellar maturation by an antimitotic agent impairs the ontogeny of eyeblink conditioning in rats. J Neurosci 15:7301–7314

    PubMed  CAS  Google Scholar 

  61. Freeman JH, Carter CS, Stanton ME (1995b) Early cerebellar lesions impair eyeblink conditioning in developing rats: differential effects of unilateral lesions on postnatal day 10 or 20. Behav Neurosci 109: 893–902

    Article  PubMed  Google Scholar 

  62. Freeman JH, Nicholson DA (2004) Developmental changes in the neural mechanisms of eyeblink conditioning. Behav Cogn Neurosci Rev 3:3–13

    Article  PubMed  Google Scholar 

  63. Dikranian K, Qin Y-Q, Labruyere J, Nemmers B, Olney JW (2005) Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Dev Brain Res 155:1–13

    Article  CAS  Google Scholar 

  64. Napper RMA, West JR (1995) Permanent neuronal cell loss in the inferior olive of adult rats exposed to alcohol during the brain growth spurt: a stereological investigation. Alcohol Clin Exp Res 19:1321–1326

    Article  PubMed  CAS  Google Scholar 

  65. Stanton ME, Goodlett CR (1998) Neonatal ethanol exposure impairs eyeblink conditioning in weanling rats. Alcohol Clin Exp Res 22:270–275

    Article  PubMed  CAS  Google Scholar 

  66. Green JT, Rogers RF, Goodlett CR, Steinmetz JE (2000) Impairment in eyeblink classical conditioning in adult rats exposed to ethanol as neonates. Alcohol Clin and Exp Res 24:438–447

    Article  CAS  Google Scholar 

  67. Tran TD, Jackson HD, Horn KH, Goodlett CR (2005) Vitamin E does not protect against neonatal ethanol-induced cerebellar damage or deficits in eyeblink classical conditioning in rats. Alcohol Clin Exp Res 29:117–129

    Article  PubMed  CAS  Google Scholar 

  68. Green JT, Johnson TB, Goodlett CR, Steinmetz JE (2002a) Eyeblink classical conditioning and interpositus nucleus activity are disrupted in adult rats exposed to ethanol as neonates. Learn Mem 9:304–320

    Article  PubMed  Google Scholar 

  69. Green JT, Tran TD, Steinmetz JE, Goodlett CR (2002b) Neonatal ethanol produces cerebellar deep nuclear cell loss and correlated disruption of eyeblink conditioning in adult rats. Brain Res 956:302–311

    Article  PubMed  CAS  Google Scholar 

  70. Lindquist DH, Sokoloff G, Steinmetz JE (2007) Ethanol-exposed neonatal rats are impaired as adults in classical eyeblink conditioning at multiple unconditioned stimulus intensities. Brain Res 1150: 155–166

    Article  PubMed  CAS  Google Scholar 

  71. Tran TD, Stanton ME, Goodlett CR (2007) Binge-like ethanol exposure during the early postnatal period impairs eyeblink conditioning at short and long CS–US intervals in rats. Dev Psychobiol 49:589–605

    Article  PubMed  CAS  Google Scholar 

  72. Coffin JM, Baroody S, Schneider K, O’Neill J (2005) Impaired cerebellar learning in children with prenatal alcohol exposure: a comparative study of eyeblink conditioning in children with ADHD and dyslexia. Cortex 41:389–398

    Article  PubMed  Google Scholar 

  73. Jacobson SW, Stanton ME, Molteno CD, Burden MJ, Fuller DS, Hoyme E, Robinson LK, Khaole N, Jacobson JL (2008) Impaired eyeblink conditioning in children with fetal alcohol syndrome. Alcohol Clin Exp Res 32:365–372

    Article  PubMed  Google Scholar 

  74. Brown KL, Burman MA, Duong HB, Stanton ME (2009) Neonatal binge alcohol exposure produces dose dependent deficits in interstimulus interval discrimination eyeblink conditioning in juvenile rats. Brain Res 1248:162–175

    Article  PubMed  CAS  Google Scholar 

  75. Brown KL, Calizo LH, Stanton ME (2008) Dose dependent deficits in dual interstimulus interval classical eyeblink conditioning tasks following neonatal binge alcohol exposure in rats. Alcohol Clin Exp Res 32:277–293

    Article  PubMed  CAS  Google Scholar 

  76. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Expt Neurol 163:495–529

    Article  CAS  Google Scholar 

  77. Woodruff-Pak DS, Finkbiner RG, Katz IR (1989) A model system demonstrating parallels in animal and human aging: extension to Alzheimer’s disease. In: Meyer EM, Simpkins JW, Yamamoto J (eds.) Novel approaches to the treatment of Alzheimer’s disease. Plenum, New York, NY, pp 355–371

    Google Scholar 

  78. Woodruff-Pak DS, Finkbiner RG, Sasse DK (1990) Eyeblink conditioning discriminates Alzheimer’s patients from non-demented aged. NeuroReport 1:45–48

    Article  PubMed  CAS  Google Scholar 

  79. Woodruff-Pak DS, Jaeger ME (1998) Predictors of eyeblink classical conditioning over the adult age span. Psychol Aging 13:193–205

    Article  PubMed  CAS  Google Scholar 

  80. Solomon PR, Brett M, Groccia-Ellison M, Oyler C, Tomasi M, Pendlebury WW (1995) Classical conditioning in patients with Alzheimer’s disease: a multiday study. Psychol Aging 10:248–254

    Article  PubMed  CAS  Google Scholar 

  81. Woodruff-Pak DS, Romano S, Papka M (1996) Training to criterion in eyeblink classical conditioning in Alzheimer’s disease, Down’s syndrome with Alzheimer’s disease, and healthy elderly. Behav Neurosci 110:22–29

    Article  PubMed  CAS  Google Scholar 

  82. Moore JW, Goodell NA, Solomon PR (1976) Central cholinergic blockade by scopolamine and habituation, classical conditioning, and latent inhibition of the rabbit’s nictitating membrane response. Physiol Psychol 4:395–399

    Google Scholar 

  83. Woodruff-Pak DS, Hinchliffe RM (1997) Scopolamine-or mecamylamine-induced lear-ning impairment: reversed by nefiracetam. Psychopharmacol 131:130–139

    Article  CAS  Google Scholar 

  84. Solomon PR, Solomon SD, Vander Schaaf E, Perry HE (1983) Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science 220:329–331

    Article  PubMed  CAS  Google Scholar 

  85. Solomon PR, Levine E, Bein T, Pendlebury WW (1991) Disruption of classical conditioning in patients with Alzheimer’s disease. Neurobiol Aging 12:283–287

    Article  PubMed  CAS  Google Scholar 

  86. Woodruff-Pak DS, Papka M, Romano S, Li Y-T (1996) Eyeblink classical conditioning in Alzheimer’s disease and cerebrovascular dementia. Neurobiol Aging 17:505–512

    PubMed  CAS  Google Scholar 

  87. Papka M, Simon EW, Woodruff-Pak DS (1994) A one-year longitudinal investigation of eyeblink classical conditioning and cognitive and behavioral tests in adults with Down’s syndrome. Aging and Cog 1:89–104

    Article  Google Scholar 

  88. Woodruff-Pak DS, Papka M, Simon EW (1994) Eyeblink classical conditioning in Down’s syndrome, fragile X syndrome, and normal adults over and under age 35. Neuropsychol 8:14–24

    Article  Google Scholar 

  89. Woodruff-Pak DS, Papka M (1996a) Huntington’s disease and eyeblink classical conditioning: normal learning but abnormal timing. J Int Neuropsychol Soc 2:323–334

    Article  PubMed  CAS  Google Scholar 

  90. Daum I, Schugens MM, Breitenstein C, Topka H, Spieker S (1996) Classical eyeblink conditioning in Parkinson’s disease. Mov Disord 11:639–646

    Article  PubMed  CAS  Google Scholar 

  91. Sommer M, Grafman J, Clark K, Hallett M (1999) Learning in Parkinson’s disease: eyeblink conditioning, declarative learning, and procedural learning. J Neurol Neurosurg Psychiatry 67:27–34

    Article  PubMed  CAS  Google Scholar 

  92. Ewers M, Braitman LE, Woodruff-Pak DS (2001) Eyeblink conditioning distinguished Alzheimer’s disease in older adults. Soc Neurosci Abstr 27:282

    Google Scholar 

  93. Clark RE, Squire LE (1998) Classical conditioning and brain systems: the role of awareness. Science 280:77–81

    Article  PubMed  CAS  Google Scholar 

  94. Woodruff-Pak DS, Papka M (1996b) Alzheimer’s disease and eyeblink conditioning: 750 ms trace versus 400 ms delay paradigm. Neurobio Aging 17:397–404

    Article  CAS  Google Scholar 

  95. Ferrante LS, Woodruff-Pak DS (1995) Longitudinal investigation of eyeblink classical conditioning in elderly human subjects. J Gerontol Psy Sci 50B:42–50

    Article  Google Scholar 

  96. Downey-Lamb MM, Woodruff-Pak DS (1999) Early detection of cognitive deficits using eyeblink classical conditioning. Alz Rep 2:37–44

    Google Scholar 

  97. Graur D, Duret L, Gouy M (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379: 333–335

    Article  PubMed  CAS  Google Scholar 

  98. Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Brain Res Mol Brain Res 10:299–305

    Article  PubMed  CAS  Google Scholar 

  99. Woodruff-Pak, DS and Steinmetz, JE (eds.) (2000) Eyeblink classical conditioning: volume 2: animal models. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  100. Thompson RF (1998) Classical conditioning: the Rosetta stone for brain substrates of age-related deficits in learning and memory. Neurobiol Aging 9:547–8

    Article  Google Scholar 

  101. Woodruff-Pak DS, Vogel RW III, Wenk GL (2001) Galantamine: effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. PNAS 98:2089–2094

    Article  PubMed  CAS  Google Scholar 

  102. Woodruff-Pak DS, Thompson RF (1988) Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18–83 years. Psych and Aging 3: 219–229

    Article  CAS  Google Scholar 

  103. Woodruff-Pak DS (1988) Aging and classical conditioning: parallel studies in rabbits and humans. Neurobio Aging 9:511–522

    Article  CAS  Google Scholar 

  104. Sparks DL, Scheff SW, Hunsaker JC III, Liu H, Landers T, Gross DR (1994) Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126: 88–94

    Article  PubMed  CAS  Google Scholar 

  105. Sparks DL, Lochhead J, Horstman D, Wagoner T, Martin T (2002) Water quality has a pronounced effect on cholesterol-induced accumulation of Alzheimer amyloid β (Aβ) in rabbit brain. JAD 4: 523–529

    PubMed  CAS  Google Scholar 

  106. Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci USA 100:11065–11069

    Article  PubMed  CAS  Google Scholar 

  107. Woodruff-Pak DS, Agelan A, Del Valle L (2007) A rabbit model of AD: valid at neuropathological, cognitive, and therapeutic levels. JAD 11:371–383

    PubMed  CAS  Google Scholar 

  108. Coico R, Woodruff-Pak DS (2008) Immunotherapy for Alzheimer’s disease: harnessing our knowledge of T cell biology using a cholesterol-fed rabbit model. JAD 15:657–671

    PubMed  CAS  Google Scholar 

  109. Woodruff-Pak DS, Agalan L, Del Valle L, Achary M (2008) An animal model of Alzheimer’s disease highlighting targets for computational modeling. In: Wang R, Gu F, Shen E (eds.) Advances in cognitive neurodynamics. Springer, Berlin, pp 903–907

    Google Scholar 

  110. Brown KL, Stanton ME (2008) Cross-modal transfer of the conditioned eyeblink response during interstimulus interval discrimination training in young rats. Dev Psychobio 50:647–664

    Article  Google Scholar 

  111. Stanton ME, Freeman JH (1994) Eyeblink conditioning in the developing rat: an animal model of learning in developmental neurotoxicology. Environ Health Perspec 102:131–139

    Google Scholar 

  112. Stanton ME, Freeman JH (2000) Developmental studies of eyeblink conditioning in the rat. In: Woodruff-Pak DS, Steinmetz JE (eds.) Eyeblink classical conditioning, volume 2: animal models. Kluwer Academic Publishers, Amsterdam, pp 105–134

    Google Scholar 

  113. West JR, Hamre KM, Pierce DR (1984) Delay in brain growth induced by alcohol in artificially reared rat pups. Alcohol 1: 213–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Andrey Mavrichev for designing the software used for visualization of eyeblink/nictitating membrane activity and for implementing this software with the rabbit eyeblink classical conditioning data shown in Fig. 1.2. Research described in this chapter was supported by grants from the National Institute of Alcohol Abuse and Alcoholism, 1 F31-AA16250 to KLB, 1-R01-AA11945 to Mark Stanton, and National Institute on Aging grants 1 RO1 AG09752, 1 R01 AG021925, 1 R01 AG023742 and grants from the Alzheimer’s Association to DSW-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brown, K.L., Woodruff-Pak, D.S. (2011). Eyeblink Conditioning in Animal Models and Humans. In: Raber, J. (eds) Animal Models of Behavioral Analysis. Neuromethods, vol 50. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-883-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-883-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-882-9

  • Online ISBN: 978-1-60761-883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics