Skip to main content

Aβ Toxicity in Primary Cultured Neurons

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 670))

Abstract

The aggregation of beta-amyloid (Aβ) into soluble oligomers is considered an early event in Alzheimer’s disease. Furthermore, the presence of these aggregates seems to lead to neurodegeneration in the context of this disease. However, the mechanisms underlying Aβ-induced neurotoxicity are not completely understood. Primary cultures of pyramidal neurons have proven to be an excellent model system for the study of such mechanisms. These cultures provide a homogenous population of neurons that extend and differentiate axons and dendrites and that establish functional synapses among them. In addition, the neurotoxic effects of preaggregated Aβ can be easily analyzed both morphologically and biochemically. Here, we describe in detail the materials and methods used for the preparation and maintenance of primary cultures of hippocampal pyramidal neurons, as well as for the aggregation of and treatment with Aβ.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ropper, A.H., Adams, R.D., Victor, M., Brown, R.H., Victor, M., and Ebrary Inc. (2005) Adams and Victor’s principles of neurology, 8th ed., McGraw-Hill Medical Pub. Division, New York.

    Google Scholar 

  2. Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P.R., Rimmer, E., and Scazufca, M. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112–2117.

    Article  PubMed  Google Scholar 

  3. Blennow, K., de Leon, M.J., and Zetterberg, H. (2006) Alzheimer’s disease. Lancet 368, 387–403.

    Article  PubMed  CAS  Google Scholar 

  4. Parihar, M.S., and Hemnani, T. (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 11, 456–467.

    Article  PubMed  CAS  Google Scholar 

  5. Honer, W.G. (2003) Pathology of presynaptic proteins in Alzheimer’s disease: more than simple loss of terminals. Neurobiol. Aging 24, 1047–1062.

    Article  PubMed  CAS  Google Scholar 

  6. Scheff, S.W., Price, D.A., Schmitt, F.A., and Mufson, E.J. (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384.

    Article  PubMed  CAS  Google Scholar 

  7. Selkoe, D.J. (2002) Alzheimer’s disease is a synaptic failure. Science 298, 789–791.

    Article  PubMed  CAS  Google Scholar 

  8. Tanzi, R.E. (2005) The synaptic Abeta hypothesis of Alzheimer disease. Nat. Neurosci. 8, 977–979.

    Article  PubMed  CAS  Google Scholar 

  9. Roberson, E.D., and Mucke, L. (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314, 781–784.

    Article  PubMed  Google Scholar 

  10. Glenner, G.G., and Wong, C.W. (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  11. Kondo, J., Honda, T., Mori, H., Hamada, Y., Miura, R., Ogawara, M., and Ihara, Y. (1988) The carboxyl third of tau is tightly bound to paired helical filaments. Neuron 1, 827–834.

    Article  PubMed  CAS  Google Scholar 

  12. Kosik, K.S., Joachim, C.L., and Selkoe, D.J. (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 83, 4044–4048.

    Article  PubMed  CAS  Google Scholar 

  13. Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T., and Hyman, B.T. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639.

    Article  PubMed  CAS  Google Scholar 

  14. Morishima-Kawashima, M., and Ihara, Y. (2002) Alzheimer’s disease: beta-amyloid protein and tau. J. Neurosci. Res. 70, 392–401.

    Article  PubMed  CAS  Google Scholar 

  15. Holzer, M., Holzapfel, H.P., Zedlick, D., Bruckner, M.K., and Arendt, T. (1994) Abnormally phosphorylated tau protein in Alzheimer’s disease: heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 63, 499–516.

    Article  PubMed  CAS  Google Scholar 

  16. Wood, J.G., Mirra, S.S., Pollock, N.J., and Binder, L.I. (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc.Natl. Acad. Sci. USA 83, 4040–4043.

    Article  PubMed  CAS  Google Scholar 

  17. Yankner, B.A., Mesulam, M.M. (1991) Seminars in medicine of the Beth Israel Hospital, Boston. Beta-amyloid and the pathogenesis of Alzheimer’s disease. N. Engl. J. Med. 325, 1849–1857.

    Article  PubMed  CAS  Google Scholar 

  18. Cleary, J.P., Walsh, D.M., Hofmeister, J.J., Shankar, G.M., Kuskowski, M.A., Selkoe, D.J., and Ashe, K.H. (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84.

    Article  PubMed  CAS  Google Scholar 

  19. Hardy, J.A., and Higgins, G.A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185.

    Article  PubMed  CAS  Google Scholar 

  20. Selkoe, D.J. (2001) Clearing the brain’s amyloid cobwebs. Neuron 32, 177–180.

    Article  PubMed  CAS  Google Scholar 

  21. Klein, W.L., Krafft, G.A., and Finch, C.E. (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24, 219–224.

    Article  PubMed  CAS  Google Scholar 

  22. Oddo, S., Caccamo, A., Tran, L., Lambert, M.P., Glabe, C.G., Klein, W.L., and Laferla, F.M. (2005) Temporal profile of Abeta oligomerization in an in vivo model of Alzheimer’s disease: A link between Abeta and tau pathology. J. Biol. Chem. 281, 1599–1604.

    Article  PubMed  Google Scholar 

  23. Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W. (1991) In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563, 311–314.

    Article  PubMed  CAS  Google Scholar 

  24. Anderson, K.L. and Ferreira, A. (2004) Alpha 1 integrin activation: a link between beta-amyloid deposition and neuronal death in aging hippocampal neurons. J. Neurosci. Res. 75, 688–697.

    Article  PubMed  CAS  Google Scholar 

  25. Ferreira, A., Caceres, A., and Kosik, K.S. (1993) Intraneuronal compartments of the amyloid precursor protein. J. Neurosci. 13, 3112–3123.

    PubMed  CAS  Google Scholar 

  26. Ferreira, A., Lu, Q., Orecchio, L., and Kosik, K.S. (1997) Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar Aβ. Mol. Cell. Neurosci. 9, 220–234.

    Article  PubMed  CAS  Google Scholar 

  27. Kelly, B.L., Vassar, R., and Ferreira, A. (2005) Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J. Biol. Chem. 280, 31746–31753.

    Article  PubMed  CAS  Google Scholar 

  28. Kelly, B.L, and Ferreira, A. (2006) Beta-amyloid-induced dynamin 1 degradation is mediated by NMDA receptors in hippocampal neurons. J. Biol. Chem. 281, 28079–28089.

    Article  PubMed  CAS  Google Scholar 

  29. Kelly, B., and Ferreira, A. (2007) Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience 146, 60–70.

    Article  Google Scholar 

  30. Park, S.Y., and Ferreira, A. (2005) The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J. Neurosci. 25, 5365–5375.

    Article  PubMed  CAS  Google Scholar 

  31. Park, S.Y., Tournell, C.E., Sinjoanu, R.C., and Ferreira, A. (2007) Caspase 3- and ­calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience 144, 119–127.

    Article  PubMed  CAS  Google Scholar 

  32. Rapoport, M. and Ferreira, A. (2000) PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J. Neurochem. 74, 125–133.

    Article  PubMed  CAS  Google Scholar 

  33. Rapoport, M., Dawson, H.N., Binder, L.I., Vitek, M. and Ferreira, A. (2002) Tau is essential for beta-amyloid induced neurotoxicity. Proc. Natl. Acad. Sci. USA 99, 6364–6369.

    Article  PubMed  CAS  Google Scholar 

  34. Shah, R.D., Anderson, K.L., Rapoport, M. and Ferreira, A. (2003) Estrogen-induced changes in the microtubular system correlate with a decreased susceptibility of aging neurons to beta-amyloid neurotoxicity. Mol. Cell. Neurosci. 24, 503–516.

    Article  PubMed  CAS  Google Scholar 

  35. Sinjoanu, R.C., Kleinschmidt, S., Bitner, R.S., Brioni, J., Moeller, A., and Ferreira, A. (2008) The novel calpain inhibitor A-705253 potently inhibits oligomeric beta-amyloid-induced dynamin 1 and tau cleavage in hippocampal neurons. Neurochem. Intl. 53, 79–88.

    Google Scholar 

  36. Alvarez, A., Toro, R., Caceres, A., and Maccioni, R.B. (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid-induced neuronal death. FEBS Lett. 459, 421–426.

    Article  PubMed  CAS  Google Scholar 

  37. Boland, B., and Campbell, V. (2003) Beta-amyloid (1-40)-induced apoptosis of cultured cortical neurones involves calpain-mediated cleavage of poly-ADP-ribose polymerase. Neurobiol. Aging 24, 179–186.

    Article  PubMed  CAS  Google Scholar 

  38. Busciglio, J., Lorenzo, A., Yeh, J., and Yankner, B.A. (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.

    Article  PubMed  CAS  Google Scholar 

  39. Copani, A., Bruno, V., Battaglia, G., Leanza, G., Pellitteri, R., Russo, A., Stanzani, S., and Nicoletti, F. (1995) Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol. Pharmacol. 47, 890–897.

    PubMed  CAS  Google Scholar 

  40. Ekinci, F.J., Malik, K.U., and Shea, T.B. (1999) Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid. MAP kinase mediates beta-amyloid-induced neurodegeneration. J. Biol Chem. 274, 30322–30327.

    Article  PubMed  CAS  Google Scholar 

  41. Estus, S., Tucker, H.M., van Rooyen, C., Wright, S., Brigham, E.F., Wogulis, M., and Rydel, R.E. (1997) Aggregated amyloid-beta protein induces cortical neuronal apoptosis and concomitant “apoptotic” pattern of gene induction. J. Neurosci. 17, 7736–7745.

    PubMed  CAS  Google Scholar 

  42. Gamblin, T.C., Chen, F., Zambrano, A., Abraha, A., Lagalwar, S., Guillozet, A.L., Lu, M., Fu, Y., Garcia-Sierra, F., LaPointe, N., Miller, R., Berry, R.W., Binder, L.I., and Cryns, V.L. (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 100, 10032–10037.

    Article  PubMed  CAS  Google Scholar 

  43. Harada, J., and Sugimoto, M. (1999) Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res. 842, 311–323.

    Article  PubMed  CAS  Google Scholar 

  44. Lee, M.S., Kwon, Y,T., Li, M., Peng, J., Friedlander, R.M., and Tsai, L.H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    Google Scholar 

  45. Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J., and Cotman, C.W. (1993) Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci.USA 90, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  46. Marin, N., Romero, B., Bosch-Morell, F., Llansola, M., Felipo, V., Roma, J., and Romero, F.J. (2000) Beta-amyloid-induced activation of caspase-3 in primary cultures of rat neurons. Mech. Ageing Dev. 119, 63–67.

    Article  PubMed  CAS  Google Scholar 

  47. Takashima, A., Noguchi, K., Sato, K., Hoshino, T., and Imahori, K. (1993) Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 90, 7789–7793.

    Article  PubMed  CAS  Google Scholar 

  48. Goslin, K., and Banker, G.A. (1991) Rat ­hippocampal neurons in low-density culture. In: Culturing Nerve Cells (Banker, G.A. and Goslin, K, ed.), pp. 251–281. Cambridge: MIT Press.

    Google Scholar 

  49. Sotthibundhu, A., Sykes, A.M., Fox, B., Underwood, C.K., Thangnipon, W., and Coulson, E.J. (2008) Beta-amyloid (1-42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 28, 3941–3946.

    Article  PubMed  CAS  Google Scholar 

  50. Lorenzo, A. and Yankner, B.A. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo Red. Proc. Natl. Acad. Sci. USA. 91, 12243–12247.

    Article  PubMed  CAS  Google Scholar 

  51. Sachse, C., Fandrich, M., and N. Grigorieff, N. (2008) Paired beta-sheet structure of an Abeta(1-40) amyloid fibril revealed by electron microscopy. Proc. Natl. Acad. Sci. USA. 105, 7462–7466.

    Google Scholar 

  52. Patel, D.A., Henry,J.E., and Good, T.A. (2007) Attenuation of beta-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: role of sialic acid attachment. Brain Res. 1161, 95–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is supported by grants from the National Institutes of Health (NS39080), Alzheimer’s Association, and The Amyotrophic Lateral Sclerosis Association to A.F.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Ferreira, A., Sinjoanu, R.C., Nicholson, A., Kleinschmidt, S. (2010). Aβ Toxicity in Primary Cultured Neurons. In: Roberson, E. (eds) Alzheimer's Disease and Frontotemporal Dementia. Methods in Molecular Biology, vol 670. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-744-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-744-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-743-3

  • Online ISBN: 978-1-60761-744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics