Skip to main content

Surface Plasmon Resonance Biosensorics in Urine Proteomics

  • Protocol
  • First Online:
The Urinary Proteome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 641))

Abstract

Surface plasmon resonance (SPR) is a novel biophysical detection method. In combination with sophisticated surface chemistries and sensing instrumentations, SPR biosensors are approved as tools for molecular interaction studies. SPR plays also a role in interaction proteomics. Once being detected in urine, SPR helps to unravel the functions of new proteins. Due to its outstanding analytical characteristics, SPR also moves more and more into the realm of quantitative analyses in the clinical laboratory. Complex urine determinations of proteins and/or metabolites will bring the SPR biosensor both to the core lab and to point-of-care-testing.

This review delineates first the optical phenomena of SPR near to the gold surface, and also the main features of bioconjugation chemistry on a solid-state surface. Then the kinetic calculation of molecular interaction analysis using SPR is introduced. In order to portray the capability of the method, new applications in urine proteomics and proteinuria diagnostics are finally described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekins, R. P. (1999) Immunoassay and other ligand assays: from isotopes to luminescence. J. Clin. Ligand Assay 22, 61–77

    Google Scholar 

  2. Luppa, P. B., Sokoll, L. J., and Chan, D. W. (2001) Immunosensors – Principles and applications to clinical chemistry. Clin. Chim. Acta 314, 1–26

    Article  CAS  PubMed  Google Scholar 

  3. Mullett, W., Lai, E. P., and Yeung, J. M. (2000) Surface plasmon resonance-based immunoassays. Methods 22, 77–91

    Article  CAS  PubMed  Google Scholar 

  4. Pearson, J. E., Gill, A., Vadgama, P. (2000) Analytical aspects of biosensors. Ann. Clin. Biochem. 37, 119–145

    Article  CAS  PubMed  Google Scholar 

  5. Rogers, K. R. (2000) Principles of affinity-based biosensors. Mol. Biotechnol. 14, 109–129

    Article  CAS  PubMed  Google Scholar 

  6. Ng, J. H., Ilag, L. L. (2003) Biochips beyond DNA: technologies and applications. Biotechnol. Annu. Rev. 9, 1–149

    Article  CAS  PubMed  Google Scholar 

  7. Marquette, C. A. and Blum, L. J. (2006) State of the art and recent advances in immunoanalytical systems. Biosens. Bioelectron 21, 1424–1433

    Article  CAS  PubMed  Google Scholar 

  8. Newman, J. D. and Setford, S. J. (2006) Enzymatic biosensors. Mol. Biotechnol. 32, 249–268

    Article  CAS  PubMed  Google Scholar 

  9. Price, C. P., St. John, A., and Hicks, J. M., eds. (2004) Point of Care Testing, 2nd edition. AACC Press, Washington, DC.

    Google Scholar 

  10. Karlsson, R. (2004) SPR for molecular interaction analysis: a review of emerging application areas. J. Mol. Recognit. 17, 151–161

    Article  CAS  PubMed  Google Scholar 

  11. Homola, J., Yee, S, S., and Gauglitz, G. (1999) Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15

    Article  Google Scholar 

  12. Homola, J. (2003) Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539

    Article  CAS  PubMed  Google Scholar 

  13. Rich, R. L. and Myszka, D. G. (2005) Survey of the year 2003 commercial optical biosensor literature. J. Mol. Recognit. 18, 1–39

    Article  CAS  PubMed  Google Scholar 

  14. Rich, R. L. and Myszka, D. G. (2005) Survey of the year 2004 commercial optical biosensor literature. J. Mol. Recognit. 18, 431–478

    Article  CAS  PubMed  Google Scholar 

  15. Rich, R. L. and Myszka, D. G. (2006) Survey of the year 2005 commercial optical biosensor literature. J. Mol. Recognit. 19, 478–534

    Article  CAS  PubMed  Google Scholar 

  16. Rich, R. L. and Myszka, D. G. (2003) A survey of the year 2002 commercial optical biosensor literature. J. Mol. Recognit. 16, 351–382

    Article  CAS  PubMed  Google Scholar 

  17. Liedberg, B., Nylander, C., and Lundström, I. (1995) Biosensing with surface plasmon resonance – how it all started. Biosens. Bioelectron 10, i–ix

    Google Scholar 

  18. Kyo, M., Usui-Aoki, K., and Koga, H. (2005) Label-free detection of proteins in crude cell lysate with antibody arrays by a surface plasmon resonance imaging technique. Anal. Chem. 77, 7115–7121

    Article  CAS  PubMed  Google Scholar 

  19. Homola, J., Vaisocherová, H., Dostálek, J., and Piliarik, M. (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37, 26–36

    Article  CAS  PubMed  Google Scholar 

  20. Yi, S. J., Yuk, J. S., Jung, S. H., Zhavnerko, G. K., Kim, Y. M., and Ha, K. S. (2003) Investigation of selective protein immobilization on charged protein array by wavelength interrogation-based SPR sensor. Mol. Cells 15, 333–340

    CAS  PubMed  Google Scholar 

  21. Jönsson, U. and Malmqvist, M. (1992) Real time biospecific interaction analysis. The integration of surface plasmon resonance detection, general biospecific interface chemistry and microfluidics into one analytical system. Adv. Biosens. 2, 291–336

    Google Scholar 

  22. Myszka, D. G. (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol. 8, 50–57

    Article  CAS  PubMed  Google Scholar 

  23. Myszka, D. G., Morton, T. A., Doyle, M. L., and Chaiken, I. M. (1997) Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor. Biophys. Chem. 64, 127–137

    Article  CAS  PubMed  Google Scholar 

  24. Khalifa, M. B., Choulier, L., Lortat-Jacob, H., Altschuh, D., and Vernet, T. (2001) Biacore data processing: an evaluation of the global fitting procedure. Anal. Biochem. 293, 194–203

    Article  CAS  PubMed  Google Scholar 

  25. De Crescenzo, G., Pham, P. L., Durocher, Y., and O’Connor-McCourt, M. D. (2003) Transforming growth factor-beta (TGF-β) binding to the extracellular domain of the type II TGF-β receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding. J. Mol. Biol. 328, 1173–1183

    Article  PubMed  Google Scholar 

  26. Usui-Aoki, K., Shimada, K., Nagano, M., Kawai, M., and Koga, H. (2005) A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology. Proteomics 5, 2396–2401

    Article  CAS  PubMed  Google Scholar 

  27. Stenberg, E., Persson, B., Roos, H., and Urbanisczky, C. (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 143, 513–526

    Article  CAS  Google Scholar 

  28. Lofas, S. and Johnsson, B. (1990) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands.J. Chem. Soc. Chem. Commun. 21, 1526–1528

    Article  Google Scholar 

  29. Lofas, S. (1995) Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure Appl. Chem. 67, 829–834

    Article  CAS  Google Scholar 

  30. Ulman, A. (1996) Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554

    Article  CAS  PubMed  Google Scholar 

  31. Li, X., Wei, X., and Husson, S. M. (2004) Thermodynamic studies on the adsorption of fibronectin adhesion-promoting peptide on nanothin films of poly(2-vinylpyridine) by SPR. Biomacromolecules 5, 869–876

    Article  CAS  PubMed  Google Scholar 

  32. Bilkova, Z., Mazurova, J., Churacek, J., Horak, D., and Turkova, J. (1999) Oriented immobilization of chymotrypsin by use of suitable antibodies coupled to a nonporous solid support. J. Chromatogr. A 852, 141–149

    Article  CAS  Google Scholar 

  33. Kindermann, M., George, N., Johnsson, N., and Johnsson, K. (2003) Covalent and selective immobilization of fusion proteins. J. Am. Chem. Soc. 125, 7810–7811

    Article  CAS  PubMed  Google Scholar 

  34. Andersson, K., Hamalainen, M., and Malmqvist, M. (1999) Identification and optimization of regeneration conditions for affinity-based biosensor assays. A multivariate cocktail approach. Anal. Chem. 71, 2475–2481

    CAS  Google Scholar 

  35. Karlsson, R., Katsamba, P. S., Nordin, H., Pol, E., and Myszka, D. G. (2006) Analyzing a kinetic titration series using affnity biosensors. Anal. Biochem. 349, 136–147

    Article  CAS  PubMed  Google Scholar 

  36. Metzger, J., Schnitzbauer, A., Meyer, M., Söder, M., Cuilleron, C. Y., and Luppa, P. B. (2003) Binding analysis of 1alpha- and 17alpha-dihydrotestosternone derivatives to homodimeric sex hormone-binding globulin. Biochemistry 42, 13735–13745

    Article  CAS  PubMed  Google Scholar 

  37. McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol. 5, 572–577.

    Article  CAS  PubMed  Google Scholar 

  38. Adachi, J., Kumar, C., Zhang, Y., Olsen, J. V., and Mann, M. (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 7, R80.1–R80.16

    Google Scholar 

  39. Nedelkov, D., Kiernan, U. A., Niederkofler, E. E., Tubbs, K. A., and Nelson, R. W. (2006) Population proteomics: the concept, attributes, and potential for cancer biomarker research. Mol. Cell Proteomics 5, 1811–1818

    Article  CAS  PubMed  Google Scholar 

  40. Zhukov, A., Schurenberg, M., Jansson, O., Areskoug, D., and Buijs, J. (2004) Integration of surface plasmon resonance with mass spectrometry: automated ligand fishing and sample preparation for MALDI MS using a Biacore 3000 biosensor. J. Biomol. Tech. 15, 112–119

    PubMed  Google Scholar 

  41. Nedelkov, D. and Nelson, R. W. (2003) Delineating protein-protein interactions via biomolecular interaction analysis-mass spectrometry. J. Mol. Recognit. 16, 9–14

    Article  CAS  PubMed  Google Scholar 

  42. Nedelkov, D. and Nelson, R. W. (2001) Analysis of human urine protein biomarkers via biomolecular interaction analysis mass spectrometry. Am. J. Kidney Dis. 38, 481–487

    Article  CAS  PubMed  Google Scholar 

  43. Chung, J. W., Bernhardt, R., and Pyun, J. C. (2006) Sequential analysis of multiple analytes using a surface plasmon resonance (SPR) biosensor. J. Immunol. Methods 311, 178–188

    Article  CAS  PubMed  Google Scholar 

  44. Lung, F. D., Chen, H. Y., and Lin, H. T. (2003) Monitoring bone loss using ELISA and surface plasmon resonance (SPR) technology. Protein Pept. Lett. 10, 313–319

    Article  CAS  PubMed  Google Scholar 

  45. Boozer, C., Kim, G., Cong, S., Guan, H., and Londergan, T. (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol. 17, 400–405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luppa, P.B., Metzger, J., Schneider, H. (2010). Surface Plasmon Resonance Biosensorics in Urine Proteomics. In: Rai, A. (eds) The Urinary Proteome. Methods in Molecular Biology, vol 641. Humana Press. https://doi.org/10.1007/978-1-60761-711-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-711-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-710-5

  • Online ISBN: 978-1-60761-711-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics