Skip to main content

Gold Nanorods: Multifunctional Agents for Cancer Imaging and Therapy

  • Protocol
  • First Online:
Book cover Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 624))

Abstract

Gold nanorods (GNRs) are strongly absorbing at near-infrared (NIR) frequencies and can be employed as multifunctional agents for biological imaging and theragnostics. GNRs can support nonlinear optical microscopies based on two-photon-excited luminescence and can enhance the contrast of biomedical imaging modalities such as optical coherence tomography and photoacoustic tomography. GNRs are also efficient at mediating the conversion of NIR light energy into heat and can generate localized photothermal effects. However, future clinical applications will require the rigorous removal of CTAB, a micellar surfactant used in GNR synthesis, and reliable methods of surface functionalization for cell-selective targeting and for minimizing nonspecific uptake into cells. This can be accomplished by using polystyrenesulfonate (PSS) as a sorbent for removing CTAB, and in situ dithiocarbamate formation for introducing chemisorptive ligands onto GNR surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liao, H., Nehl, C. L., and Hafner, J. H. (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1, 201–208.

    Article  CAS  PubMed  Google Scholar 

  2. Tong, L., Wei, Q., Wei, A., and Cheng, J. -X. (2009) Gold nanorods as contrast agents for biological imaging: surface conjugation, two-photon luminescence, and photothermal effects. Photochem Photobiol 85, 21–32.

    Article  CAS  PubMed  Google Scholar 

  3. Weissleder, R. (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19, 316–317.

    Article  CAS  PubMed  Google Scholar 

  4. Jain, P. K., Lee, K. S., El-Sayed, I. H., and El-Sayed, M. A. (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110, 7238–7248.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, H., Huff, T. B., Zweifel, D. A., He, W., Low, P. S., Wei, A., and Cheng, J. -X. (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102, 15752–15756.

    Article  CAS  PubMed  Google Scholar 

  6. Imura, K., Nagahara, T., and Okamoto, H. (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109, 13214–13220.

    Article  CAS  PubMed  Google Scholar 

  7. Bouhelier, A., Bachelot, R., Lerondel, G., Kostcheev, S., Royer, P., and Wiederrecht, G. P. (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95, 267405.

    Article  CAS  PubMed  Google Scholar 

  8. Huff, T. B., Hansen, M. N., Zhao, Y., Cheng, J. -X., and Wei, A. (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  9. Huff, T. B., Tong, L., Zhao, Y., Hansen, M. N., Cheng, J. -X., and Wei, A. (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2, 125–132.

    Article  CAS  PubMed  Google Scholar 

  10. Tong, L., Zhao, Y., Huff, T. B., Hansen, M. N., Wei, A., and Cheng, J. -X. (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19, 3136–3141.

    Article  CAS  PubMed  Google Scholar 

  11. He, W., Henne, W. A., Wei, Q., Zhao, Y., Doorneweerd, D. D., Cheng, J. -X., Low, P. S., and Wei, A. (2008) Two-photon luminescence imaging of Bacillus spores using peptide-functionalized gold nanorods. Nano Res 2, 450–456.

    Article  Google Scholar 

  12. Oldenburg, A. L., Hansen, M. N., Zweifel, D. A., Wei, A., and Boppart, S. A. (2006) Plasmon-resonant gold nanorods as low-albedo contrast agents for optical coherence tomography. Opt Express 14, 6724–6738.

    Article  CAS  PubMed  Google Scholar 

  13. Oldenburg, A. L., Hansen, M. N., Ralston, T. S., Wei, A., and Boppart, S. A. (2009) Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J. Mater Chem 19, 6407–6411.

    Article  Google Scholar 

  14. Eghtedari, M., Oraevsky, A., Copland, J. A., Kotov, N., Conjusteau, A., and Motamedi, M. (2007) High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 7, 1914–1918.

    Article  CAS  PubMed  Google Scholar 

  15. Chou, C. -H., Chen, C. -D., and Wang, C. R. C. (2005) Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors. J Phys Chem B 109, 11135–11138.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, X., El-Sayed, I. H., Qian, W., and El-Sayed, M. A. (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128, 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi, H., Niidome, T., Nariai, A., Niidome, Y., and Yamada, S. (2006) Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 35, 500–501.

    Article  CAS  Google Scholar 

  18. Dickerson, E. B., Dreaden, E. C., Huang, X., El-Sayed, I. H., Chu, H., Pushpanketh, S., McDonald, J. F., and El-Sayed, M. A. (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269, 57–66.

    Article  CAS  PubMed  Google Scholar 

  19. Cuenca, A. G., Jiang, H., Hochwald, S. N., Delano, M., Cance, W. G., and Grobmyer, S. R. (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459–466.

    Article  CAS  PubMed  Google Scholar 

  20. Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., and Lin, C. P. (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84, 4023–4032.

    Article  CAS  PubMed  Google Scholar 

  21. Zharov, V. P., Galitovskaya, E. N., Johnson, C., and Kelly, T. (2005) Synergistic enhancement of selective nanothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37, 219–226.

    Article  PubMed  Google Scholar 

  22. Jana, N. R., Gearheart, L., and Murphy, C. J. (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13, 1389–1393.

    Article  CAS  Google Scholar 

  23. Murphy, C. J., Gole, A. M., Hunyadi, S. E., and Orendorff, C. J. (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45, 7544–7554.

    Article  CAS  PubMed  Google Scholar 

  24. Zweifel, D. A. and Wei, A. (2005) Sulfide-arrested growth of gold nanorods. Chem Mater 17, 4256–4261.

    Article  CAS  PubMed  Google Scholar 

  25. Nikoobakht, B. and El-Sayed, M. A. (2003) Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem Mater 15, 1957–1962.

    Article  CAS  Google Scholar 

  26. Sau, T. K. and Murphy, C. J. (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20, 6414–6420.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, M. Z. and Guyot-Sionnest, P. (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109, 22192–22200.

    Article  CAS  PubMed  Google Scholar 

  28. Jana, N. R. (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1, 875–882.

    Article  CAS  PubMed  Google Scholar 

  29. Khanal, B. P. and Zubarev, E. R. (2008) Purification of high aspect ratio gold nanorods: complete removal of platelets. J Am Chem Soc 130, 1263–1264.

    Article  Google Scholar 

  30. Cortesi, R., Esposito, E., Menegatti, E., Gambari, R., and Nastruzzi, C. (1996) Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA. Int J Pharm 139, 69–78.

    Article  CAS  Google Scholar 

  31. Mirska, D., Schirmer, K., Funari, S., Langner, A., Dobner, B., and Brezesinski, G. (2005) Biophysical and biochemical properties of a binary lipid mixture for DNA transfection. Colloids Surf B 40, 51–59.

    Article  CAS  Google Scholar 

  32. Takahashi, H., Niidome, Y., Niidome, T., Kaneko, K., Kawasaki, H., and Yamada, H. (2006) Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22, 2–5.

    Article  CAS  PubMed  Google Scholar 

  33. Leonov, A. P., Zheng, J., Clogston, J. D., Stern, S. T., Patri, A. K., and Wei, A. (2008) Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2, 2481–2488.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, R. J. and Low, P. S. (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269, 3198–3204.

    CAS  PubMed  Google Scholar 

  35. Smith, D. K. and Korgel, B. A. (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24, 644–649.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, M. Z. and Guyot-Sionnest, P. (2006) Preparation and optical properties of silver chalcogenide coated gold nanorods. J Mater Chem 16, 3942–3945.

    Article  CAS  Google Scholar 

  37. Niidome, T., Yamagata, M., Okamoto, Y., Akiyama, Y., Takahashi, H., Kawano, T., Katayama, Y., and Niidome, Y. (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 35, 500–501.

    Google Scholar 

  38. Gole, A. and Murphy, C. J. (2005) Biotin-streptavidin-induced aggregation of gold nanorods: tuning rod-rod orientation. Langmuir 21, 10756–10762.

    Article  CAS  PubMed  Google Scholar 

  39. Oyelere, A. K., Chen, P. C., Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 18, 1490–1497.

    Article  CAS  PubMed  Google Scholar 

  40. Gole, A. and Murphy, C. J. (2008) Azide-derivatized gold nanorods: functional materials for “Click” chemistry. Langmuir 24, 266–272.

    Article  CAS  PubMed  Google Scholar 

  41. Liao, H. and Hafner, J. H. (2005) Gold nanorod bioconjugates. Chem Mater 17, 4636–4641.

    Article  CAS  Google Scholar 

  42. Smith, D. K., Miller, N. R., and Korgel, B. A. (2009) Iodide in CTAB prevents gold nanorod formation. Langmuir 25, 9518–9524.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Institutes of Health (EB-001777) and the Oncological Sciences Center at Purdue University. We thank Dr. Stephan Stern and Dr. Anil Patri (Nanomaterials Characterization Laboratory, SAIC-Frederick) for cytotoxicity evaluations and additional materials characterization, supported under NCI contract N01-CO-12400, and Prof. Ji-Xin Cheng and his group members (Purdue University) for valuable collaborative research and scientific discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wei, A., Leonov, A.P., Wei, Q. (2010). Gold Nanorods: Multifunctional Agents for Cancer Imaging and Therapy. In: Grobmyer, S., Moudgil, B. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 624. Humana Press. https://doi.org/10.1007/978-1-60761-609-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-609-2_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-608-5

  • Online ISBN: 978-1-60761-609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics