Skip to main content

Designs for Linkage Analysis and Association Studies of Complex Diseases

  • Protocol
  • First Online:
Statistical Methods in Molecular Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 620))

Abstract

Genetic linkage analysis has been a traditional means for identifying regions of the genome with large genetic effects that contribute to a disease. Following linkage analysis, association studies are widely pursued to fine-tune regions with significant linkage signals. For complex diseases which often involve function of multi-genetic variants each with small or moderate effect, linkage analysis has little power compared to association studies. In this chapter, we give a brief review of design issues related to linkage analysis and association studies with human genetic data. We introduce methods commonly used for linkage and association studies and compared the relative merits of the family-based and population-based association studies. Compared to candidate gene studies, a genomewide blind searching of disease variant is proving to be a more powerful approach. We briefly review the commonly used two-stage designs in genome-wide association studies. As more and more biological evidences indicate the role of genomic imprinting in disease, identifying imprinted genes becomes critically important. Design and analysis in genetic mapping imprinted genes are introduced in this chapter. Recent efforts in integrating gene expression analysis and genetic mapping, termed expression quantitative trait loci (eQTLs) mapping or genetical genomics analysis, offer new prospect in elucidating the genetic architecture of gene expression. Designs in genetical genomics analysis are also covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander, E.S., and Botstein, D. (1989) Mapping endelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    PubMed  CAS  Google Scholar 

  2. Broman, K. (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim. 30, 44–52.

    CAS  Google Scholar 

  3. Burt, D.W. (2002) A comprehensive review on the analysis of QTL in animals. Trends. Genet. 18, 488–488.

    Article  Google Scholar 

  4. Wu, R.L., Casella, G., and Ma, C.-X. (2007) Statistical Genetics of Quantitative Traits: Linkage, Maps and QTL. Springer, New York.

    Google Scholar 

  5. Risch, N.J. (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am. J. Hum. Genet. 46, 222–228.

    PubMed  CAS  Google Scholar 

  6. Ott, J. (1991) Analysis of Human Genetic Linkage. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  7. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P., and Lander, E.S. (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363.

    PubMed  CAS  Google Scholar 

  8. Haseman, J.K., and Elston, R.C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19.

    Article  PubMed  CAS  Google Scholar 

  9. Shete, S., Jacobs, K.B., and Elston, R.C. (2003) Adding further power to the Haseman and Elston method for detecting linkage in larger sibships: Weighting sums and differences. Hum. Hered. 55, 79–85.

    Article  PubMed  Google Scholar 

  10. Wang, T., and Elston, R.C. (2005) Two-level Haseman-Elston regression for general pedigree data analysis. Genet. Epidemiol. 29, 12–22.

    Article  PubMed  CAS  Google Scholar 

  11. Amos, C.I. (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am. J. Hum. Genet. 54, 535–543.

    PubMed  CAS  Google Scholar 

  12. Williams, J.T., and Blangero, J. (1999) Power of variance component linkage analysis to detect quantitative trait loci. Ann. Hum. Genet. 63, 545–563.

    Article  PubMed  CAS  Google Scholar 

  13. Pong-Wong, R., George, A.W., Woolliams, J.A., and Haley, C.S. (2001) A simple and rapid method for calculating identity-by-descent matrices using multiple markers. Genet. Sel. Evol. 33, 453–471.

    Article  PubMed  CAS  Google Scholar 

  14. Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R. (2002) Merlin rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101.

    Article  PubMed  CAS  Google Scholar 

  15. Almasy, L., and Blangero, J. (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211.

    Article  PubMed  CAS  Google Scholar 

  16. Boehnke, M. (1994) Limits of resolution of genetic linkage studies: Implications for the positional cloning of human disease genes. Am. J. Hum. Genet. 55, 379–390.

    PubMed  CAS  Google Scholar 

  17. Cardon, L.R., and Bell, J.I. (2001) Association study designs for complex diseases. Nat. Rev. Genet. 2, 91–99.

    Article  PubMed  CAS  Google Scholar 

  18. Gibson, G., and Muse, S. (2001) A Primer of Genome Science. Sinnauer, Sunderland, MA.

    Google Scholar 

  19. Zheng, G., Freidlin, B., Li, Z., and Gastwirth, J.L. (2003) Choice of scores in trend tests for case-control studies of candidate-gene associations. Biometrical J. 45, 335–348.

    Article  Google Scholar 

  20. Song, K., and Elston, R.C. (2006) A powerful method of combining measures of association and Hardy‐Weinberg disequilibrium for fine-mapping in case-control studies. Stat. Med. 25, 105–126.

    Article  PubMed  Google Scholar 

  21. Hoh, J., Wile, A., and Ott, J. (2001) Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res. 11, 269–293.

    Article  Google Scholar 

  22. Zheng, G., Freidlin, B., and Gastwirth, J.L. (2006) Comparison of robust tests for genetic association using case-control studies. IMS Lecture Notes-Monograph Series. 49, 253–265.

    Article  Google Scholar 

  23. Schaid, D.J., Rowland, C.M., Tines, D.E., Jacobson, R.M., and Poland, G.A. (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70, 425–434.

    Article  PubMed  Google Scholar 

  24. Epstein, M.P., and Satten, G.A. (2003) Inference on haplotype effects in case-control studies using unphased genotype data. Am. J. Hum. Genet. 73, 1316–1329.

    Article  PubMed  CAS  Google Scholar 

  25. Lake, S.L., Lyon, H., Tantisira, K., Silverman, E.K., Weiss, S.T., Laird, N.M., and Schaid, D.J. (2003) Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum. Hered. 55, 56–65.

    Article  PubMed  CAS  Google Scholar 

  26. Cordell, H.J., Barratt, B.J., and Clayton, D.G. (2004) Case/pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene‐gene and gene‐environment interactions, and parent-of-origin effects. Genet. Epidemiol. 26, 167–185.

    Article  PubMed  Google Scholar 

  27. Spinka, C., Carroll, R.J., and Chatterjee, N. (2005) Analysis of case-control studies of genetic and environmental factors with missing genetic information and haplotype-phase ambiguity. Genet. Epidemiol. 29, 649–659.

    Article  Google Scholar 

  28. McGinnis, R. (2000) General equations for Pt, Ps, and the power of the TDT and the affected-sib-pair test. Am. J. Hum. Genet. 67, 1340–1347.

    PubMed  CAS  Google Scholar 

  29. Risch, N.J. (2000) Searching for genetic determinants in the new millennium. Nature 405, 847–856.

    Article  PubMed  CAS  Google Scholar 

  30. Pfeiffer, R.M., and Gail, M.H. (2003) Sample size calculations for population- and family- based case-control association studies on marker genotypes. Genet. Epidemiol. 25, 136–148.

    Article  PubMed  Google Scholar 

  31. Menashe, I., Rosenberg, P.S., and Chen, B.E. (2008) PGA: Power calculator for case-control genetic association analyses. BMC Genet. 9, 36.

    Article  PubMed  Google Scholar 

  32. Zheng, G., and Tian, X., and ACCESS Research Group (2006b) Robust trend tests for genetic association using matched case-control design. Stat. Med. 25, 3160–3173.

    Google Scholar 

  33. Pritchard, J.K., and Donnelly, P. (2001) Case-control studies of association in structured or admixed populations. Theo. Pop. Bio. 60, 227–237.

    Article  CAS  Google Scholar 

  34. Devlin, B., and Roeder, K. (1999) Genomic control for association studies. Biometrics 55, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  35. Devlin, B., Roeder, K., and Wasserman, L. (2001) Genomic control, a new approach to genetic-based association studies. Theo. Pop. Bio. 60, 155–166.

    Article  CAS  Google Scholar 

  36. Laird, N.M., and Lange, C. (2006) Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 7, 385–394.

    Article  PubMed  CAS  Google Scholar 

  37. Spielman, R.S., McGinnis, R.E., and Ewens, W.J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516.

    PubMed  CAS  Google Scholar 

  38. Hirschhorn, J.N., and Daly, M.J. (2005) Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108.

    Article  PubMed  CAS  Google Scholar 

  39. Schaid, D.J. (1999) Likelihoods and TDT for the case-parents design. Genet. Epidemiol. 16, 250–260.

    Article  PubMed  CAS  Google Scholar 

  40. Martin, E.R., Monks, S.A., Warren, L.L., and Kaplan, N.L. (2000) A test for linkage and association in general pedigree: The pedigree disequilibrium test. Am. J. Hum. Genet. 67, 146–154.

    Article  PubMed  CAS  Google Scholar 

  41. Abecasis, G.R., Cardon, L.R., and Cookson, W.O. (2000) A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66, 279–292.

    Article  PubMed  CAS  Google Scholar 

  42. Gordon, D., Heath, C., Liu, X., and Ott, J. (2001) A transmission/disequilibrium test that allows for genotyping errors in the analysis of single-nucleotide polymorphism data. Am. J. Hum. Genet. 69, 371–380.

    Article  PubMed  CAS  Google Scholar 

  43. Gordon, D., Haynes, C., Johnnidis, C., Patel, S.B., Bowcock, A.M., and Ott, J. (2004) A transmission disequilibrium test for general pedigrees that is robust to the presence of random genotyping errors and any number of untyped parents. Eur. J. Hum. Genet. 12, 752–761.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Y., Wise, C.A., Gordon, D., and Finch, S.J. (2008) A family-based likelihood ratio test for general pedigree structures that allows for genotyping error and missing data. Hum. Hered. 66, 99–110.

    Article  PubMed  Google Scholar 

  45. Ioannidis, J.P. (2003) Genetic associations: False or true? Trends Mol. Med. 9, 135–138.

    Article  PubMed  Google Scholar 

  46. Evangelou, E., Trikalinos, T.A., Salanti, G., and Ioannidis, J.P.A. (2006) Family-based versus unrelated case-control designs for genetic associations. PLoS Genet. 2, e123. doi:10.1371/journal.pgen.0020123.

    Google Scholar 

  47. Ackerman, H., Usen, S., Jallow, M., et al. (2005) A comparison of case-control and family-based association methods: The example of sickle-cell and malaria. Ann. Hum. Genet. 69, 559–565.

    Article  PubMed  CAS  Google Scholar 

  48. Epstein, M.P, Veal, C.D., Trembath, R.C., et al. (2005) Genetic association analysis using data from triads and unrelated subjects. Am. J. Hum. Genet. 76, 592–608.

    Article  PubMed  CAS  Google Scholar 

  49. Weinberg, C.R., and Umbach, D.M. (2005) A hybrid design for studying genetic influences on risk of diseases with onset early in life. Am. J. Hum. Genet. 77, 627–636.

    Article  PubMed  CAS  Google Scholar 

  50. Hunter, D.J., Kraft, P., Jacobs, K.B., et al. (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874.

    Article  PubMed  CAS  Google Scholar 

  51. Samani, N.J., Erdmann, J., Hall, A.S., et al., WTCCC and the Cardiogenics Consortium. (2007) Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453.

    Google Scholar 

  52. Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447, 661–678.

    Google Scholar 

  53. Yeager, M., Orr, N., Hayes, R.B., et al. (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649.

    Article  PubMed  CAS  Google Scholar 

  54. Cui, Y.H., Kang, G.L., Sun, K.L., Romero, R., Qian, M., and Fu, W.J. (2008) Gene-centric Genomewide Association Study via Entropy. Genetics 179, 637–650.

    Article  PubMed  Google Scholar 

  55. Satagopan, J.M., Verbel, D.A., Venkatramanm, E.S., Offit, K.E., and Begg, C.B. (2002) Two-stage design for gene-disease association studies. Biometrics 58, 163–170.

    Article  PubMed  Google Scholar 

  56. Satagopan, J.M., and Elston, R.C. (2003) Optimal two-stage genotyping in population-based association studies. Genet. Epidemiol. 25, 149–157.

    Article  PubMed  Google Scholar 

  57. Satagopan, J.M., Veukatraman, E.S., and Begg, C.B. (2004) Two-stage designs for gene-disease association studies with sample size constraints. Biometrics 60, 589–597.

    Article  PubMed  Google Scholar 

  58. Thomas, D.C., Xie, R., and Gebregziabher, M. (2004) Two-stage sampling designs for gene association studies. Genet. Epidemiol. 27, 401–414.

    Article  PubMed  Google Scholar 

  59. Wang, H., Thomas, D.C., Péer, I., and Stram, D.O. (2006) Optimal two-stage genotyping designs for genome-wide association scans. Genet. Epidemiol. 30, 356–368.

    Article  PubMed  Google Scholar 

  60. Zuo, Y., Zou, G., and Zhao, H. (2006) Two-stage designs in case-control association analysis. Genetics 173, 1747–1760.

    Article  PubMed  CAS  Google Scholar 

  61. Skol, A.D., Scott, L.J., Abecasis, G.R., and Boehnke, M. (2007) Optimal designs for two-stage genome-wide association studies. Genet. Epidemiol. 31, 776–778.

    Article  PubMed  Google Scholar 

  62. Prentice, R.L., Pettinger, M., and Anderson, G.L. (2005) Statistical issues arising in the Women’s Health Initiative. Biometrics 61, 899–941.

    Article  PubMed  Google Scholar 

  63. Elston, R., Lin, D.Y., and Geng, Z. (2007) Multistage sampling for genetic studies. Ann. Rev. Genomics Hum. Genet. 8, 327–342.

    Article  CAS  Google Scholar 

  64. Skol, A.D., Scott, L.J., Abecasis, G.R., and Boehnke, M. (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38, 209–213.

    Article  PubMed  CAS  Google Scholar 

  65. Zuo, Y., Zou, G., Wang, J., Zhao, H., and Liang, H.(2008) Optimal two-stage design for case-control association analysis incorporating genotyping error. Ann. Hum. Genet. 72, 375–387.

    Article  PubMed  CAS  Google Scholar 

  66. Lin, D.Y. (2006) Evaluating statistical significance in two-stage genomewide association studies. Am. J. Hum. Genet. 78, 505–509.

    Article  PubMed  CAS  Google Scholar 

  67. Pfeifer, K. (2000) Mechanisms of genomic imprinting. Am. J. Hum. Genet. 67, 777–787.

    Article  PubMed  CAS  Google Scholar 

  68. Alleman, M., and Doctor, J. (2000) Genomic imprinting in plants: Observations and evolutionary implications. Plant Mol. Biol. 43, 147–161.

    Article  PubMed  CAS  Google Scholar 

  69. Falls, J.G., Pulford, D.J., Wylie, A.A., and Jirtle, R.L. (1999) Genomic imprinting: Implications for human disease. Am. J. Pathol. 154, 635–647.

    Article  PubMed  CAS  Google Scholar 

  70. Jeon, J.-T., Carlborg, O., Tornsten, A., et al. (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat. Genet. 21, 157–158.

    Article  PubMed  CAS  Google Scholar 

  71. Tuiskula-Haavisto, M., de Koning, D.J., Honkatukia, M., Schulman, N.F., Maki-Tanila, A., and Vilkki, J. (2004) Quantitative trait loci with parent-of-origin effects in chicken. Genet. Res. 84, 57–66.

    Article  PubMed  CAS  Google Scholar 

  72. Hanson, R.L., Kobes, S., Lindsay, R.S., and Kmowler, W.C. (2001) Assessment of parent-of-origin effects in linkage analysis of quantitative traits. Am. J. Hum. Genet. 68, 951–962.

    Article  PubMed  CAS  Google Scholar 

  73. Knapp, M., and Strauch, K. (2004) Affected-sib-pair test for linkage based on constraints for identical-by-descent distributions corresponding to disease models with imprinting. Genet. Epidemiol. 26, 273–285.

    Article  PubMed  Google Scholar 

  74. Shete, S., and Amos, C.I. (2002) Testing for genetic linkage in families by a variance-components approach in the presence of genomic imprinting. Am. J. Hum. Genet. 70, 751–757.

    Article  PubMed  CAS  Google Scholar 

  75. Shete, S., Zhou, X., and Amos, C.I. (2003) Genomic imprinting and linkage test for quantitative trait loci in extended pedigrees. Am. J. Hum. Genet. 73, 933–938.

    Article  PubMed  CAS  Google Scholar 

  76. de Koning, D-J., Rattink, A.P., Harlizius, et al. (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc. Natl. Acad. Sci. USA 97, 7947–7950.

    Article  PubMed  Google Scholar 

  77. de Koning, D.-J., Bovenhuis, H., and van Arendonk, J.A.M. (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161, 931–938.

    PubMed  Google Scholar 

  78. Cui, Y.H., Lu, Q., Cheverud, J.M., Littell R.C., and Wu, R.L. (2006) Model for mapping imprinted quantitative trait loci in an inbred F2 design. Genomics 87, 543–551.

    Article  PubMed  CAS  Google Scholar 

  79. Cui, Y.H., Cheverud, J.M., and Wu, R.L. (2007) A Statistical Model for Dissecting Genomic Imprinting through Genetic Mapping. Genetica 130, 227–239.

    Article  PubMed  Google Scholar 

  80. Cui, Y.H., Li, S.Y., and Li, G.X. (2008) Functional Mapping Imprinted Quantitative Trait Loci Underlying Developmental Characteristics. Theor. Biol. Med. Model. 6, 5.

    CAS  Google Scholar 

  81. Tycko, B., and Morison, I.M. (2002) Physiological functions of imprinted genes. J. Cell Physiol. 192, 245–258.

    Article  PubMed  CAS  Google Scholar 

  82. Constancia, M., Kelsey, G., and Reik, W. (2004) Resourceful imprinting. Nature 432, 53–57.

    Article  PubMed  CAS  Google Scholar 

  83. Isles, A.R., and Holland, A.J. (2005) Imprinted genes and mother-offspring interactions. Early Hum. Dev. 81, 73–77.

    Article  PubMed  Google Scholar 

  84. Spencer, H.G. (2002) The correlation between relatives on the supposition of genomic imprinting. Genetics 161, 411–417.

    PubMed  CAS  Google Scholar 

  85. Naumova, A.K., and Croteau, S. (2004) Mechanisms of epigenetic variation: polymorphic imprinting. Curr. Genomics 5, 417–429.

    Article  CAS  Google Scholar 

  86. Sandovici, I., Kassovska-Bratinova, S., Loredo-Osti, J.C., et al. (2005) Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum. Mol. Genet. 14, 2135–2143.

    Article  PubMed  CAS  Google Scholar 

  87. Neff, M.W., Broman, K.W., Mellersh, C.S., Ray, K., Acland, G.M., Aguirre, G.D., Ziegle, J.S., Ostrander, E.A., and Rine, J. (1999) A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151, 803–820.

    PubMed  CAS  Google Scholar 

  88. Marklund, L., Moller, M.J., Hoyheim, B., et al. (1996) A comprehensive linkage map of the pig based on a wild pig-Large White intercross. Anim. Genet. 27. 255–269.

    Article  PubMed  CAS  Google Scholar 

  89. Dietrich, W.F., Miller, J., Steen, R., et al. (1996) A comprehensive genetic map of the mouse genome. Nature 380, 149–152.

    Article  PubMed  CAS  Google Scholar 

  90. Knott, S.A., Marklund, L., Haley, C.S., et al. (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149, 1069–1080.

    PubMed  CAS  Google Scholar 

  91. Hu, Y.Q., Zhou, J.Y., and Fung, W.K. (2007) An extension of the transmission disequilibrium test incorporating imprinting. Genetics. 175, 1489–1504.

    Article  PubMed  Google Scholar 

  92. Hu, Y.Q., Zhou, J.Y., Sun, F., and Fung, W.K. (2007) The transmission disequilibrium test and imprinting effects test based on case-parent pairs. Genet. Epidemiol. 31, 273–287.

    Article  PubMed  Google Scholar 

  93. Brem, R.B., Yvert, G., Clinton, R., and Kruglyak, L. (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755.

    Article  PubMed  CAS  Google Scholar 

  94. Cheung, V.G., Conlin, L.K., Weber, T.M., et al. (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nat. Genet. 33, 422–425.

    Article  PubMed  CAS  Google Scholar 

  95. Schadt, E.E., Monks, S.A., Drake, T.A., et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302.

    Article  PubMed  CAS  Google Scholar 

  96. Jansen, R.C., and Nap, J.P. (2001) Genetical genomics: the added value from segregation. Trends. Genet. 17, 388–391.

    Article  PubMed  CAS  Google Scholar 

  97. Hubner, N., Wallace, C.A., Zimdahl, H., et al. (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253.

    Article  PubMed  CAS  Google Scholar 

  98. Yvert, G., Brem, R.B., Whittle, J., Akey, J.M., Foss, E., Smith, E.N., Mackelprang, R., and Kruglyak, L. (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35, 57–64.

    Article  PubMed  CAS  Google Scholar 

  99. Morley, M., Molony, C.M., Weber, T.M., Devlin, J.L., Ewens, K.G., Spielman, R.S., and Cheung, V.G. (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747.

    Article  PubMed  CAS  Google Scholar 

  100. Brem R.B., and Kruglyak, L. (2005) The landscape of genetic complexity across 5, 700 gene expression traits in yeast. Proc. Natl. Acad. Sci. 102, 1572–1577.

    Article  PubMed  CAS  Google Scholar 

  101. Bystrykh, L., Weersing, E., Dontje, et al. (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using “genetical genomics”. Nat. Genet. 37, 225–232.

    Article  PubMed  CAS  Google Scholar 

  102. Lan, H., Chen, M., Flowers, J.B., et al. (2006) Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genet. 2, e6.

    Google Scholar 

  103. Wu, C., Delano, D.L., Mitro, N., et al. (2008) Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet. 4, e1000070.

    Google Scholar 

  104. Bing, N., and Hoeschele, I. (2005) Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170, 533–542.

    Article  PubMed  CAS  Google Scholar 

  105. Chesler, E.J., Lu, L., Shou, S., et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242.

    Article  PubMed  CAS  Google Scholar 

  106. Li, H., Lu, L., Manly, K.F., Chesler, E.J., Bao, L., Wang, J., Zhou, M., Williams, R.W., and Cui,Y. (2005) Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum. Mol. Genet. 14, 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  107. Zhu, J., Wiener, M., Zhang, C., Fridman, A., Minch, E., Lum, P.Y., Sachs, J.R., and Schadt, E.E. (2007) Increasing the power to detect causal associtions by combing genotypic and expression data in segregating populations. PloS Comp. Biol. 3, e69.

    Google Scholar 

  108. Derome, N., Bougas, B., Rogers, S.M., Whiteley, A., Labbe, A., Laroche, J., and Bernatchez, L. (2008) Pervasive sex-linked effects on transcription regulation as revealed by eQTL mapping in lake whitefish species pairs (Coregonus sp, Salmonidae). Genetics 179, 1903–1917.

    Article  PubMed  CAS  Google Scholar 

  109. West, M.A., Kim., K., Kliebenstein., D.J., van Leeuwen, H., Michelmore, R.W., Doerge, R.W., and St Clair, D.A. (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175, 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  110. Rosa, G.J., de Leon, N., and Rosa, A.J. (2006) Review of microarray experimental design strategies for genetical genomics studies. Physiol. Genomics 28, 15–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF grants DMS-0707031 and DMS-0540745.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cui, Y., Li, G., Li, S., Wu, R. (2010). Designs for Linkage Analysis and Association Studies of Complex Diseases. In: Bang, H., Zhou, X., van Epps, H., Mazumdar, M. (eds) Statistical Methods in Molecular Biology. Methods in Molecular Biology, vol 620. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-580-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-580-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-578-1

  • Online ISBN: 978-1-60761-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics