Skip to main content

Pharmacokinetic and Pharmacodynamic Implications of P-Glycoprotein Modulation

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

Modulation of P-glycoprotein (Pgp)-mediated transport has significant pharmacokinetic implications for Pgp substrates. Pharmacokinetic alterations may be at the systemic (blood concentrations), regional (organ or tissue concentrations), or local (intracellular concentrations) level. Regardless of the particular location of Pgp modulation, changes in substrate pharmacokinetics will have the potential to alter the magnitude and duration of pharmacologic effect (pharmacodynamics). It is important to understand each of the aspects of Pgp modulation for a given Pgp substrate in order to predict the degree to which Pgp modulation may affect that substrate, to minimize untoward effects associated with that modulation, or to exploit that modulation for specific therapeutic advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou SF, Wang LL, Di YM et al (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039

    Article  CAS  PubMed  Google Scholar 

  2. Miller DS, Bauer B, Hartz AM (2008) Modu­lation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196–209

    Article  CAS  PubMed  Google Scholar 

  3. Gradhand U, Kim RB (2008) Pharmacogenomics of MRP transporters (ABCC1–5) and BCRP (ABCG2). Drug Metab Rev 40:317–354

    Article  CAS  PubMed  Google Scholar 

  4. Glaeser H, Fromm MF (2008) Animal models and intestinal drug transport. Expert Opin Drug Metab Toxicol 4:347–361

    Article  CAS  PubMed  Google Scholar 

  5. Shitara Y, Horie T, Sugiyama Y (2006) Trans­porters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27:425–446

    Article  CAS  PubMed  Google Scholar 

  6. Launay-Vacher V, Izzedine H, Karie S et al (2006) Renal tubular drug transporters. Nephron Physiol 103:p97–p106

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Chen C, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325:349–356

    Article  CAS  PubMed  Google Scholar 

  8. Lum BL, Gosland MP (1995) MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol Oncol Clin North Am 9:319–336

    CAS  PubMed  Google Scholar 

  9. Fojo T, Coley HM (2007) The role of efflux pumps in drug-resistant metastatic breast cancer: new insights and treatment strategies. Clin Breast Cancer 7:749–756

    Article  CAS  PubMed  Google Scholar 

  10. Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F (2006) The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets 7:893–909

    Article  CAS  PubMed  Google Scholar 

  11. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  12. Ha SN, Hochman J, Sheridan RP (2007) Mini review on molecular modeling of P-glycoprotein (Pgp). Curr Top Med Chem 7:1525–1529

    Article  CAS  PubMed  Google Scholar 

  13. Ma Q, Lu AY (2008) The challenges of dealing with promiscuous drug-metabolizing enzymes, receptors and transporters. Curr Drug Metab 9:374–383

    Article  CAS  PubMed  Google Scholar 

  14. Siarheyeva A, Lopez JJ, Glaubitz C (2006) Localization of multidrug transporter substrates within model membranes. Biochemistry 45:6203–6211

    Article  CAS  PubMed  Google Scholar 

  15. Shukla S, Wu CP, Ambudkar SV (2008) Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges. Expert Opin Drug Metab Toxicol 4:205–223

    Article  CAS  PubMed  Google Scholar 

  16. Wigler PW, Patterson FK (1993) Inhibition of the multidrug resistance efflux pump. Biochim Biophys Acta 1154:173–181

    CAS  PubMed  Google Scholar 

  17. Aszalos A (2007) Drug-drug interactions affected by the transporter protein, P-glyco­protein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today 12:838–843

    Article  CAS  PubMed  Google Scholar 

  18. Aszalos A (2007) Drug-drug interactions affected by the transporter protein, P-glyco­protein (ABCB1, MDR1) I. Preclinical aspects. Drug Discov Today 12:833–837

    Article  CAS  PubMed  Google Scholar 

  19. Sun H, Chow EC, Liu S, Du Y, Pang KS (2008) The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol 4:395–411

    Article  CAS  PubMed  Google Scholar 

  20. Matheny CJ, Ali RY, Yang X, Pollack GM (2004) Effect of prototypical inducing agents on P-glycoprotein and CYP3A expression in mouse tissues. Drug Metab Dispos 32:1008–1014

    CAS  PubMed  Google Scholar 

  21. Bauer B, Yang X, Hartz AM et al (2006) In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol 70:1212–1219

    Article  CAS  PubMed  Google Scholar 

  22. Aquilante CL, Letrent SP, Pollack GM, Brouwer KL (2000) Increased brain P-glycoprotein in morphine tolerant rats. Life Sci 66:PL47–PL51

    Article  CAS  PubMed  Google Scholar 

  23. Dagenais C, Graff CL, Pollack GM (2004) Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol 67:269–276

    Article  CAS  PubMed  Google Scholar 

  24. Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  CAS  PubMed  Google Scholar 

  25. Macdonald N, Gledhill A (2007) Potential impact of ABCB1 (p-glycoprotein) polymorphisms on avermectin toxicity in humans. Arch Toxicol 81:553–563

    Article  CAS  PubMed  Google Scholar 

  26. Adachi Y, Suzuki H, Sugiyama Y (2003) Quantitative evaluation of the function of small intestinal P-glycoprotein: comparative studies between in situ and in vitro. Pharm Res 20:1163–1169

    Article  CAS  PubMed  Google Scholar 

  27. Badhan R, Penny J, Galetin A, Houston JB (2008) Methodology for development of a physiological model incorporating CYP3A and P-glycoprotein for the prediction of intestinal drug absorption. J Pharm Sci 98(6):2180–2197

    Article  Google Scholar 

  28. Kivisto KT, Niemi M, Fromm MF (2004) Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam Clin Pharmacol 18:621–626

    Article  PubMed  Google Scholar 

  29. Kitamura Y, Koto H, Matsuura S et al (2008) Modest effect of impaired P-glycoprotein on the plasma concentrations of fexofenadine, quinidine, and loperamide following oral administration in collies. Drug Metab Dispos 36:807–810

    Article  CAS  PubMed  Google Scholar 

  30. Gramatte T, Oertel R (1999) Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 66:239–245

    Article  CAS  PubMed  Google Scholar 

  31. Ballent M, Lifschitz A, Virkel G, Sallovitz J, Lanusse C (2006) Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin: in vitro and in vivo assessments. Drug Metab Dispos 34:457–463

    CAS  PubMed  Google Scholar 

  32. Spahn-Langguth H, Baktir G, Radschuweit A et al (1998) P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. Int J Clin Pharmacol Ther 36:16–24

    CAS  PubMed  Google Scholar 

  33. Igel S, Drescher S, Murdter T et al (2007) Increased absorption of digoxin from the human jejunum due to inhibition of intestinal transporter-mediated efflux. Clin Pharmacokinet 46:777–785

    Article  CAS  PubMed  Google Scholar 

  34. Sandstrom R, Lennernas H (1999) Repeated oral rifampicin decreases the jejunal permeability of R/S-verapamil in rats. Drug Metab Dispos 27:951–955

    CAS  PubMed  Google Scholar 

  35. Drescher S, Glaeser H, Murdter T et al (2003) P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin Pharmacol Ther 73:223–231

    Article  CAS  PubMed  Google Scholar 

  36. Westphal K, Weinbrenner A, Zschiesche M et al (2000) Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 68:345–355

    Article  CAS  PubMed  Google Scholar 

  37. Advani R, Fisher GA, Lum BL et al (2001) A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res 7:1221–1229

    CAS  PubMed  Google Scholar 

  38. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM (1999) Inhibition of P-glyco­protein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552–557

    CAS  PubMed  Google Scholar 

  39. Marie JP, Helou C, Thevenin D, Delmer A, Zittoun R (1992) In vitro effect of P-glycoprotein (Pgp) modulators on drug sensitivity of leukemic progenitors (CFU-L) in acute myelogenous leukemia (AML). Exp Hematol 20:565–568

    CAS  PubMed  Google Scholar 

  40. Kim RB, Fromm MF, Wandel C et al (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294

    Article  CAS  PubMed  Google Scholar 

  41. Angelin B, Arvidsson A, Dahlqvist R, Hedman A, Schenck-Gustafsson K (1987) Quinidine reduces biliary clearance of digoxin in man. Eur J Clin Invest 17:262–265

    Article  CAS  PubMed  Google Scholar 

  42. Booth CL, Brouwer KR, Brouwer KL (1998) Effect of multidrug resistance modulators on the hepatobiliary disposition of doxorubicin in the isolated perfused rat liver. Cancer Res 58:3641–3648

    CAS  PubMed  Google Scholar 

  43. Yamada T, Kato Y, Kusuhara H, Lemaire M, Sugiyama Y (1998) Characterization of the transport of a cationic octapeptide, octreotide, in rat bile canalicular membrane: possible involvement of P-glycoprotein. Biol Pharm Bull 21:874–878

    CAS  PubMed  Google Scholar 

  44. Micuda S, Fuksa L, Mundlova L et al (2007) Morphological and functional changes in p-glycoprotein during dexamethasone-induced hepatomegaly. Clin Exp Pharmacol Physiol 34:296–303

    Article  CAS  PubMed  Google Scholar 

  45. Riley J, Styles J, Verschoyle RD et al (2000) Association of tamoxifen biliary excretion rate with prior tamoxifen exposure and increased mdr1b expression. Biochem Pharmacol 60:233–239

    Article  CAS  PubMed  Google Scholar 

  46. Tanigawara Y (2000) Role of P-glycoprotein in drug disposition. Ther Drug Monit 22:137–140

    Article  CAS  PubMed  Google Scholar 

  47. De Lannoy IA, Koren G, Klein J, Charuk J, Silverman M (1992) Cyclosporin and quinidine inhibition of renal digoxin excretion: evidence for luminal secretion of digoxin. Am J Physiol 263:F613–F622

    PubMed  Google Scholar 

  48. Hori R, Okamura N, Aiba T, Tanigawara Y (1993) Role of P-glycoprotein in renal tubular secretion of digoxin in the isolated perfused rat kidney. J Pharmacol Exp Ther 266:1620–1625

    CAS  PubMed  Google Scholar 

  49. Schenck-Gustafsson K, Dahlqvist R (1981) Pharmacokinetics of digoxin in patients subjected to the quinidine-digoxin interaction. Br J Clin Pharmacol 11:181–186

    CAS  PubMed  Google Scholar 

  50. Schenck-Gustafsson K, Jogestrand T, Nord­lander R, Dahlqvist R (1981) Effect of quinidine on digoxin concentration in skeletal muscle and serum in patients with atrial fibrillation. Evidence for reduced binding of digoxin in muscle. N Engl J Med 305:209–211

    Article  CAS  PubMed  Google Scholar 

  51. Kovarik JM, Rigaudy L, Guerret M, Gerbeau C, Rost KL (1999) Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin Pharmacol Ther 66:391–400

    Article  CAS  PubMed  Google Scholar 

  52. Ding R, Tayrouz Y, Riedel KD et al (2004) Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther 76:73–84

    Article  CAS  PubMed  Google Scholar 

  53. Okamura N, Hirai M, Tanigawara Y et al (1993) Digoxin-cyclosporin A interaction: modulation of the multidrug transporter P-glycoprotein in the kidney. J Pharmacol Exp Ther 266:1614–1619

    CAS  PubMed  Google Scholar 

  54. Ito S, Koren G, Harper PA, Silverman M (1993) Energy-dependent transport of digoxin across renal tubular cell monolayers (LLC-PK1). Can J Physiol Pharmacol 71:40–47

    CAS  PubMed  Google Scholar 

  55. Hirata S, Izumi S, Furukubo T et al (2005) Interactions between clarithromycin and digoxin in patients with end-stage renal disease. Int J Clin Pharmacol Ther 43:30–36

    CAS  PubMed  Google Scholar 

  56. Ceckova-Novotna M, Pavek P, Staud F (2006) P-glycoprotein in the placenta: expression, localization, regulation and function. Reprod Toxicol 22:400–410

    Article  CAS  PubMed  Google Scholar 

  57. Fromm MF (2004) Importance of P-glyco­protein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    Article  CAS  PubMed  Google Scholar 

  58. Golden PL, Pollack GM (2003) Blood-brain barrier efflux transport. J Pharm Sci 92:1739–1753

    Article  CAS  PubMed  Google Scholar 

  59. Pardridge WM (1998) CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70:1781–1792

    Article  CAS  PubMed  Google Scholar 

  60. Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24:1745–1758

    Article  CAS  PubMed  Google Scholar 

  61. Meyer RP, Gehlhaus M, Knoth R, Volk B (2007) Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab 8:297–306

    Article  CAS  PubMed  Google Scholar 

  62. Graff CL, Pollack GM (2004) Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab 5:95–108

    Article  CAS  PubMed  Google Scholar 

  63. Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 19:1327–1338

    Article  CAS  PubMed  Google Scholar 

  64. Golden PL, Pardridge WM (2000) Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 20:165–181

    Article  CAS  PubMed  Google Scholar 

  65. Chen C, Liu X, Smith BJ (2003) Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokine-tics and pharmacodynamics in drug discovery and development. Curr Drug Metab 4:272–291

    Article  CAS  PubMed  Google Scholar 

  66. Chen C, Pollack GM (1997) Blood-brain disposition and antinociceptive effects of -D-penicillamine2, 5-enkephalin in the mouse. J Pharmacol Exp Ther 283:1151–1159

    CAS  PubMed  Google Scholar 

  67. Chen C, Pollack GM (1998) Altered disposition and antinociception of [D-penicillamine(2, 5)] enkephalin in mdr1a-gene-deficient mice. J Pharmacol Exp Ther 287:545–552

    CAS  PubMed  Google Scholar 

  68. Chen C, Pollack GM (1999) Enhanced antinociception of the model opioid peptide [D-penicillamine] enkephalin by P-glycoprotein modulation. Pharm Res 16:296–301

    Article  CAS  PubMed  Google Scholar 

  69. Thuerauf N, Fromm MF (2006) The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci 256:281–286

    Article  PubMed  Google Scholar 

  70. Schinkel AH, Wagenaar E, Mol CA, van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  CAS  PubMed  Google Scholar 

  71. Chen C, Hanson E, Watson JW, Lee JS (2003) P-glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab Dispos 31:312–318

    Article  CAS  PubMed  Google Scholar 

  72. Lin JH (2007) Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 3:81–92

    Article  CAS  PubMed  Google Scholar 

  73. Phillips EJ, Rachlis AR, Ito S (2003) Digoxin toxicity and ritonavir: a drug interaction mediated through p-glycoprotein? Aids 17:1577–1578

    Article  PubMed  Google Scholar 

  74. Hebert MF, Lam AY (1999) Diltiazem increases tacrolimus concentrations. Ann Pharmacother 33:680–682

    Article  CAS  PubMed  Google Scholar 

  75. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68:231–237

    Article  CAS  PubMed  Google Scholar 

  76. Letrent SP, Pollack GM, Brouwer KR, Brouwer KL (1999) Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 27:827–834

    CAS  PubMed  Google Scholar 

  77. Zong J, Pollack GM (2000) Morphine antinociception is enhanced in mdr1a gene-deficient mice. Pharm Res 17:749–753

    Article  CAS  PubMed  Google Scholar 

  78. Graff CL, Zhao R, Pollack GM (2005) Pharmacokinetics of substrate uptake and distribution in murine brain after nasal instillation. Pharm Res 22:235–244

    Article  CAS  PubMed  Google Scholar 

  79. Pallis M, Turzanski J, Higashi Y, Russell N (2002) P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk Lymphoma 43:1221–1228

    Article  CAS  PubMed  Google Scholar 

  80. Takara K, Sakaeda T, Okumura K (2004) Carvedilol: a new candidate for reversal of MDR1/P-glycoprotein-mediated multidrug resistance. Anticancer Drugs 15:303–309

    Article  CAS  PubMed  Google Scholar 

  81. Lee JJ, Swain SM (2005) Development of novel chemotherapeutic agents to evade the mechanisms of multidrug resistance (MDR). Semin Oncol 32:S22–S26

    Article  CAS  PubMed  Google Scholar 

  82. Coley HM (2008) Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34:378–390

    Article  CAS  PubMed  Google Scholar 

  83. Padowski JM (2008) A multi-factorial approach to understanding and predicting brain exposure to pharmacologic agents. Doctoral Dissertation, University of North Carolina at Chapel Hill. UMI No. UNC:3270, pp 95–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Pollack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Padowski, J.M., Pollack, G.M. (2010). Pharmacokinetic and Pharmacodynamic Implications of P-Glycoprotein Modulation. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics