Skip to main content

Impact of Breast Cancer Resistance Protein on Cancer Treatment Outcomes

  • Protocol
  • First Online:
Book cover Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

Breast cancer resistance protein (BCRP/ABCG2) was discovered in multidrug resistant breast cancer cells having an ATP-dependent transport-based resistance phenotype. This ABC transporter functions (at least in part) as a xenobiotic protective mechanism for the organism: in the gut and biliary tract, it prevents absorption and enhances elimination of potentially toxic substances. As a placental barrier, it protects the fetus; similarly, it serves as a component of blood-brain and blood-testis barrier; BCRP is expressed in stem cells and may protect them from potentially harmful agents. Therefore, BCRP could influence cancer outcomes by (a) endogenous BCRP affecting the absorption, distribution, metabolism, and elimination of anticancer drugs; (b) BCRP expression in cancer cells may directly cause resistance by active efflux of anticancer drugs; (c) BCRP expression in cancer cells could be a manifestation of the activity of metabolic and signaling pathways that impart multiple mechanisms of drug resistance, self-renewal (stemness), and invasiveness (aggressiveness) – i.e. impart a poor prognosis – to cancers. This chapter presents a synopsis of translational clinical studies relating BCRP expression in leukemias, lymphomas, and a variety of solid tumors with clinical outcome. Data are emerging that expression of BCRP, like P-glycoprotein/ABCB1, is associated with adverse outcomes in a variety of human cancers. Whether this adverse prognostic effect results from resistance imparted to the cancer cells as the direct result of BCRP efflux of anticancer drugs, or whether BCRP expression (and also Pgp expression – coexpression of these transporters is common among poor risk cancers) serves as indicators of the activity of signaling pathways that enhance cancer cellular proliferation, metastases, genomic instability, enhance drug resistance, and oppose programmed cell death mechanisms is yet unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross DD, Doyle LA, Schiffer CA et al (1996) Expression of multidrug resistance-associated protein (MRP) mRNA in blast cells from acute myeloid leukemia (AML) patients. Leukemia 10:48–55

    CAS  PubMed  Google Scholar 

  2. Chen YN, Mickley LA, Schwartz AM et al (1990) Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 265:10073–10080

    CAS  PubMed  Google Scholar 

  3. Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670

    CAS  PubMed  Google Scholar 

  4. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–5339

    CAS  PubMed  Google Scholar 

  5. Miyake K, Mickley L, Litman T et al (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59:8–13

    CAS  PubMed  Google Scholar 

  6. Abbott BL (2003) ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol Oncol 21:115–130

    PubMed  Google Scholar 

  7. Abbott BL (2006) ABCG2 (BCRP): a cytoprotectant in normal and malignant stem cells. Clin Adv Hematol Oncol 4:63–72

    PubMed  Google Scholar 

  8. Ahmed-Belkacem A, Pozza A, Macalou S et al (2006) Inhibitors of cancer cell multidrug resistance mediated by breast cancer resistance protein (BCRP/ABCG2). Anticancer Drugs 17:239–243

    CAS  PubMed  Google Scholar 

  9. Allen JD, Schinkel AH (2002) Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 1:427–434

    CAS  PubMed  Google Scholar 

  10. Assaraf YG (2007) Molecular basis of antifolate resistance. Cancer Metastasis Rev 26:153–181

    CAS  PubMed  Google Scholar 

  11. Bates SE, Robey R, Miyake K et al (2001) The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 33:503–511

    CAS  PubMed  Google Scholar 

  12. Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10:1295–1312

    CAS  PubMed  Google Scholar 

  13. Breedveld P, Beijnen JH, Schellens JH (2006) Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 27:17–24

    CAS  PubMed  Google Scholar 

  14. Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20:11–20

    CAS  PubMed  Google Scholar 

  15. Calcagno AM, Kim IW, Wu CP, Shukla S, Ambudkar SV (2007) ABC drug transporters as molecular targets for the prevention of multidrug resistance and drug-drug interactions. Curr Drug Deliv 4:324–333

    CAS  PubMed  Google Scholar 

  16. Cervenak J, Andrikovics H, Ozvegy-Laczka C et al (2006) The role of the human ABCG2 multidrug transporter and its variants in cancer therapy and toxicology. Cancer Lett 234:62–72

    CAS  PubMed  Google Scholar 

  17. Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259

    CAS  PubMed  Google Scholar 

  18. Coley HM (2008) Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34:378–390

    CAS  PubMed  Google Scholar 

  19. Cusatis G, Sparreboom A (2008) Pharmacogenomic importance of ABCG2. Pharmacogenomics 9:1005–1009

    CAS  PubMed  Google Scholar 

  20. Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    PubMed  Google Scholar 

  21. Egorin MJ (2000) Adenosine triphosphate-binding cassette proteins and bioavailability: “we can pump you up (or out)”. J Natl Cancer Inst 92:1628–1629

    CAS  PubMed  Google Scholar 

  22. Ejendal KF, Hrycyna CA (2002) Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 3:503–511

    CAS  PubMed  Google Scholar 

  23. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1:27–42

    CAS  PubMed  Google Scholar 

  24. Guo Y, Lubbert M, Engelhardt M (2003) CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells 21:15–20

    CAS  PubMed  Google Scholar 

  25. Hadnagy A, Gaboury L, Beaulieu R, Balicki D (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312:3701–3710

    CAS  PubMed  Google Scholar 

  26. Haimeur A, Conseil G, Deeley RG, Cole SP (2004) The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology. substrate specificity and regulation. Curr Drug Metab 5:21–53

    CAS  PubMed  Google Scholar 

  27. Han B, Zhang JT (2004) Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Curr Med Chem Anticancer Agents 4:31–42

    CAS  PubMed  Google Scholar 

  28. Hardwick LJ, Velamakanni S, van Veen HW (2007) The emerging pharmacotherapeutic significance of the breast cancer resistance protein (ABCG2). Br J Pharmacol 151:163–174

    CAS  PubMed  Google Scholar 

  29. Hirose M, Hosoi E, Hamano S, Jalili A (2003) Multidrug resistance in hematological malignancy. J Med Invest 50:126–135

    PubMed  Google Scholar 

  30. Huang Y (2007) Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev 26:183–201

    CAS  PubMed  Google Scholar 

  31. Ishikawa T, Tamura A, Saito H, Wakabayashi K, Nakagawa H (2005) Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Naturwissenschaften 92:451–463

    CAS  PubMed  Google Scholar 

  32. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166

    CAS  PubMed  Google Scholar 

  33. Koshiba S, An R, Saito H et al (2008) Human ABC transporters ABCG2 (BCRP) and ABCG4. Xenobiotica 38:863–888

    CAS  PubMed  Google Scholar 

  34. Krishnamurthy P, Schuetz JD (2005) The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals 18:349–358

    CAS  PubMed  Google Scholar 

  35. Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 46:381–410

    CAS  PubMed  Google Scholar 

  36. Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114:345–358

    CAS  PubMed  Google Scholar 

  37. Kuo MT (2007) Roles of multidrug resistance genes in breast cancer chemoresistance. Adv Exp Med Biol 608:23–30

    CAS  PubMed  Google Scholar 

  38. Lage H, Dietel M (2000) Effect of the breast-cancer resistance protein on atypical multidrug resistance. Lancet Oncol 1:169–175

    CAS  PubMed  Google Scholar 

  39. Lazarowski A, Czornyj L, Lubienieki F et al (2007) ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia 48(Suppl 5):140–149

    CAS  PubMed  Google Scholar 

  40. Lemos C, Jansen G, Peters GJ (2008) Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 98:857–862

    CAS  PubMed  Google Scholar 

  41. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424

    CAS  PubMed  Google Scholar 

  42. Lepper ER, Nooter K, Verweij J et al (2005) Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics 6:115–138

    CAS  PubMed  Google Scholar 

  43. Lin T, Islam O, Heese K (2006) ABC transporters, neural stem cells and neurogenesis–a different perspective. Cell Res 16:857–871

    CAS  PubMed  Google Scholar 

  44. Litman T, Druley TE, Stein WD, Bates SE (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58:931–959

    CAS  PubMed  Google Scholar 

  45. Lou H, Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26:1357–1360

    CAS  PubMed  Google Scholar 

  46. Mao Q (2008) BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res 25:1244–1255

    CAS  PubMed  Google Scholar 

  47. Marie JP (2001) Drug resistance in hematologic malignancies. Curr Opin Oncol 13:463–469

    CAS  PubMed  Google Scholar 

  48. Perez-Tomas R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13:1859–1876

    CAS  PubMed  Google Scholar 

  49. Plasschaert SL, Van Der Kolk DM, De Bont ES et al (2004) Breast cancer resistance protein (BCRP) in acute leukemia. Leuk Lymphoma 45:649–654

    CAS  PubMed  Google Scholar 

  50. Polgar O, Bates SE (2005) ABC transporters in the balance: is there a role in multidrug resistance? Biochem Soc Trans 33:241–245

    CAS  PubMed  Google Scholar 

  51. Polgar O, Robey RW, Bates SE (2008) ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 4:1–15

    CAS  PubMed  Google Scholar 

  52. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26:39–57

    CAS  PubMed  Google Scholar 

  53. Ross DD (2000) Novel mechanisms of drug resistance in leukemia. Leukemia 14:467–473

    CAS  PubMed  Google Scholar 

  54. Ross DD (2004) Modulation of drug resistance transporters as a strategy for treating myelodysplastic syndrome. Best Pract Res Clin Haematol 17:641–651

    CAS  PubMed  Google Scholar 

  55. Ross DD (2007) Drug resistance transporters. In: Karp JE (ed) Acute myelogenous leukemia, Humana Press, Totowa, NJ, pp 163–173

    Google Scholar 

  56. Nakanishi T, Doyle LA, Hassel B et al (2003) Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol 64:1452–1462

    CAS  PubMed  Google Scholar 

  57. van Herwaarden AE, Jonker JW, Wagenaar E et al (2003) The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4, 5-b)pyridine. Cancer Res 63:6447–6452

    PubMed  Google Scholar 

  58. Elkind NB, Szentpetery Z, Apati A et al (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 65:1770–1777

    CAS  PubMed  Google Scholar 

  59. Nakamura Y, Oka M, Soda H et al (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546

    CAS  PubMed  Google Scholar 

  60. Yanase K, Tsukahara S, Asada S et al (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 3:1119–1125

    CAS  PubMed  Google Scholar 

  61. Robey RW, Honjo Y, Morisaki K et al (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89:1971–1978

    CAS  PubMed  Google Scholar 

  62. Chen ZS, Robey RW, Belinsky MG et al (2003) Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 63:4048–4054

    CAS  PubMed  Google Scholar 

  63. Ozvegy-Laczka C, Hegedus T, Varady G et al (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495

    PubMed  Google Scholar 

  64. Burger H, Van Tol H, Boersma AW et al (2004) Imatinib mesylate (STI571) is a substrate for the BCRP/ABCG2 drug pump. Blood 104:2940–2942

    CAS  PubMed  Google Scholar 

  65. Jonker JW, Buitelaar M, Wagenaar E et al (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 99:15649–15654

    CAS  PubMed  Google Scholar 

  66. Krishnamurthy P, Ross DD, Nakanishi T et al (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225

    CAS  PubMed  Google Scholar 

  67. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649

    CAS  PubMed  Google Scholar 

  68. Imai Y, Asada S, Tsukahara S et al (2003) Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 64:610–618

    CAS  PubMed  Google Scholar 

  69. Allen JD, van Loevezijn A, Lakhai JM et al (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    CAS  PubMed  Google Scholar 

  70. Kruijtzer CM, Beijnen JH, Rosing H et al (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950

    CAS  PubMed  Google Scholar 

  71. Breedveld P, Zelcer N, Pluim D et al (2004) Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 64:5804–5811

    CAS  PubMed  Google Scholar 

  72. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    CAS  PubMed  Google Scholar 

  73. Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    CAS  PubMed  Google Scholar 

  74. Goodell MA, Rosenzweig M, Kim H et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    CAS  PubMed  Google Scholar 

  75. Jonker JW, Freeman J, Bolscher E et al (2005) Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23:1059–1065

    CAS  PubMed  Google Scholar 

  76. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 99:12339–12344

    CAS  PubMed  Google Scholar 

  77. Iida A, Saito S, Sekine A et al (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 47:285–310

    CAS  PubMed  Google Scholar 

  78. Backstrom G, Taipalensuu J, Melhus H et al (2003) Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci 18:359–364

    CAS  PubMed  Google Scholar 

  79. Honjo Y, Morisaki K, Huff LM et al (2002) Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 1:696–702

    CAS  PubMed  Google Scholar 

  80. Imai Y, Nakane M, Kage K et al (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616

    CAS  PubMed  Google Scholar 

  81. Zamber CP, Lamba JK, Yasuda K et al (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13:19–28

    CAS  PubMed  Google Scholar 

  82. Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109:238–246

    CAS  PubMed  Google Scholar 

  83. Kobayashi D, Ieiri I, Hirota T et al (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 33:94–101

    CAS  PubMed  Google Scholar 

  84. Kondo C, Suzuki H, Itoda M et al (2004) Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 21:1895–1903

    CAS  PubMed  Google Scholar 

  85. Vethanayagam RR, Wang H, Gupta A et al (2005) Functional analysis of the human variants of breast cancer resistance protein: I206L, N590Y, and D620N. Drug Metab Dispos 33:697–705

    CAS  PubMed  Google Scholar 

  86. Lee SS, Jeong HE, Yi JM et al (2007) Identification and functional assessment of BCRP polymorphisms in a Korean population. Drug Metab Dispos 35:623–632

    CAS  PubMed  Google Scholar 

  87. Tamura A, Wakabayashi K, Onishi Y et al (2006) Genetic polymorphisms of human ABC transporter ABCG2: development of the standard method for functional validation of SNPs by using the Flp recombinase system. J Exp Ther Oncol 6:1–11

    CAS  PubMed  Google Scholar 

  88. Tamura A, Wakabayashi K, Onishi Y et al (2007) Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci 98:231–239

    CAS  PubMed  Google Scholar 

  89. Poonkuzhali B, Lamba J, Strom S et al (2008) Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos 36:780–795

    CAS  PubMed  Google Scholar 

  90. Nakanishi T, Bailey-Dell KJ, Hassel BA et al (2006) Novel 5′ untranslated region variants of BCRP mRNA are differentially expressed in drug-selected cancer cells and in normal human tissues: implications for drug resistance, tissue-specific expression, and alternative promoter usage. Cancer Res 66:5007–5011

    CAS  PubMed  Google Scholar 

  91. Jonker JW, Smit JW, Brinkhuis RF et al (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656

    CAS  PubMed  Google Scholar 

  92. Sparreboom A, Gelderblom H, Marsh S et al (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 76:38–44

    CAS  PubMed  Google Scholar 

  93. Sparreboom A, Loos WJ, Burger H et al (2005) Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther 4:650–658

    CAS  PubMed  Google Scholar 

  94. de Jong FA, Marsh S, Mathijssen RH et al (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10:5889–5894

    PubMed  Google Scholar 

  95. Nakatomi K, Yoshikawa M, Oka M et al (2001) Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 288:827–832

    CAS  PubMed  Google Scholar 

  96. Schellens JH, Maliepaard M, Scheper RJ et al (2000) Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann N Y Acad Sci 922:188–194

    CAS  PubMed  Google Scholar 

  97. Han JY, Lim HS, Yoo YK et al (2007) Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110:138–147

    PubMed  Google Scholar 

  98. Colombo S, Soranzo N, Rotger M et al (2005) Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo. Pharmacogenet Genomics 15:599–608

    CAS  PubMed  Google Scholar 

  99. Lal S, Wong ZW, Sandanaraj E et al (2008) Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci 99:816–823

    CAS  PubMed  Google Scholar 

  100. Cusatis G, Gregorc V, Li J et al (2006) Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 98:1739–1742

    CAS  PubMed  Google Scholar 

  101. Li J, Cusatis G, Brahmer J et al (2007) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 6:432–438

    CAS  PubMed  Google Scholar 

  102. Erdilyi DJ, Kamory E, Csokay B et al (2008) Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J 8:321–327

    CAS  PubMed  Google Scholar 

  103. Erdelyi DJ, Kamory E, Zalka A et al (2006) The role of ABC-transporter gene polymorphisms in chemotherapy induced immunosuppression, a retrospective study in childhood acute lymphoblastic leukaemia. Cell Immunol 244:121–124

    CAS  PubMed  Google Scholar 

  104. Kim IS, Kim HG, Kim DC et al (2008) ABCG2 Q141K polymorphism is associated with chemotherapy-induced diarrhea in patients with diffuse large B-cell lymphoma who received frontline rituximab plus cyclophosphamide/doxorubicin/vincristine/prednisone chemotherapy. Cancer Sci 99:2496–2501

    CAS  PubMed  Google Scholar 

  105. Adkison KK, Vaidya SS, Lee DY et al (2008) The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol 66:233–239

    CAS  PubMed  Google Scholar 

  106. Urquhart BL, Ware JA, Tirona RG et al (2008) Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 18:439–448

    CAS  PubMed  Google Scholar 

  107. Yamasaki Y, Ieiri I, Kusuhara H et al (2008) Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther 84:95–103

    CAS  PubMed  Google Scholar 

  108. Korenaga Y, Naito K, Okayama N et al (2005) Association of the BCRP C421A polymorphism with nonpapillary renal cell carcinoma. Int J Cancer 117:431–434

    CAS  PubMed  Google Scholar 

  109. Hu LL, Wang XX, Chen X et al (2007) BCRP gene polymorphisms are associated with susceptibility and survival of diffuse large B-cell lymphoma. Carcinogenesis 28:1740–1744

    CAS  PubMed  Google Scholar 

  110. Gardner ER, Ahlers CM, Shukla S et al (2008) Association of the ABCG2 C421A polymorphism with prostate cancer risk and survival. BJU Int 102:1694–1699

    CAS  PubMed  Google Scholar 

  111. Hahn NM, Marsh S, Fisher W et al (2006) Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 12:6094–6099

    CAS  PubMed  Google Scholar 

  112. Muller PJ, Dally H, Klappenecker CN et al (2009) Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients. Int J Cancer 124:1669–1674

    PubMed  Google Scholar 

  113. Honjo Y, Hrycyna CA, Yan QW et al (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61:6635–6639

    CAS  PubMed  Google Scholar 

  114. Allen JD, Van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH (2003) Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 63:1339–1344

    CAS  PubMed  Google Scholar 

  115. Wang X, Nitanda T, Shi M et al (2004) Induction of cellular resistance to nucleoside reverse transcriptase inhibitors by the wild-type breast cancer resistance protein. Biochem Pharmacol 68:1363–1370

    CAS  PubMed  Google Scholar 

  116. Nakanishi T, Karp JE, Tan M et al (2003) Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res 9:3320–3328

    CAS  PubMed  Google Scholar 

  117. Plasschaert SL, van der Kolk DM, de Bont ES et al (2003) The role of breast cancer resistance protein in acute lymphoblastic leukemia. Clin Cancer Res 9:5171–5177

    CAS  PubMed  Google Scholar 

  118. Suvannasankha A, Minderman H, O’Loughlin KL et al (2004) Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function. Leukemia 18:1252–1257

    CAS  PubMed  Google Scholar 

  119. Ross DD, Karp JE, Chen TT, Doyle LA (2000) Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood 96:365–368

    CAS  PubMed  Google Scholar 

  120. Steinbach D, Sell W, Voigt A et al (2002) BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 16:1443–1447

    CAS  PubMed  Google Scholar 

  121. van den Heuvel-Eibrink MM, Wiemer EA et al (2002) Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia 16:833–839

    PubMed  Google Scholar 

  122. Abbott BL, Colapietro AM, Barnes Y et al (2002) Low levels of ABCG2 expression in adult AML blast samples. Blood 100: 4594–4601

    CAS  PubMed  Google Scholar 

  123. Benderra Z, Faussat AM, Sayada L et al (2004) Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res 10:7896–7902

    CAS  PubMed  Google Scholar 

  124. Benderra Z, Faussat AM, Sayada L et al (2005) MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res 11:7764–7772

    CAS  PubMed  Google Scholar 

  125. Uggla B, Stahl E, Wagsater D et al (2005) BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leuk Res 29:141–146

    CAS  PubMed  Google Scholar 

  126. Sargent JM, Williamson CJ, Maliepaard M et al (2001) Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia. Br J Haematol 115:257–262

    CAS  PubMed  Google Scholar 

  127. van der Kolk DM, Vellenga E, Scheffer GL et al (2002) Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood 99:3763–3770

    PubMed  Google Scholar 

  128. van der Pol MA, Broxterman HJ, Pater JM et al (2003) Function of the ABC transporters, P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia. Haematologica 88:134–147

    PubMed  Google Scholar 

  129. Xie Y, Xu K, Linn DE et al (2008) The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem 283:3349–3356

    CAS  PubMed  Google Scholar 

  130. Mogi M, Yang J, Lambert JF et al (2003) Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 278:39068–39075

    CAS  PubMed  Google Scholar 

  131. Nakanishi T, Shiozawa K, Hassel BA, Ross DD (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108:678–684

    CAS  PubMed  Google Scholar 

  132. Damiani D, Tiribelli M, Calistri E et al (2006) The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 91:825–828

    CAS  PubMed  Google Scholar 

  133. de Figueiredo-Pontes LL, Pintao MC, Oliveira LC et al (2008) Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B 74B:163–168

    Google Scholar 

  134. Galimberti S, Guerrini F, Palumbo GA et al (2004) Evaluation of BCRP and MDR-1 co-expression by quantitative molecular assessment in AML patients. Leuk Res 28:367–372

    CAS  PubMed  Google Scholar 

  135. Ho MM, Hogge DE, Ling V (2008) MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp Hematol 36:433–442

    CAS  PubMed  Google Scholar 

  136. van den Heuvel-Eibrink MM, van der Holt B, Burnett AK et al (2007) CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age. Ann Hematol 86:329–337

    CAS  PubMed  Google Scholar 

  137. Ho RH, Choi L, Lee W et al (2007) Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 17:647–656

    CAS  PubMed  Google Scholar 

  138. Raaijmakers MH, de Grouw EP, Heuver LH et al (2005) Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin Cancer Res 11:2436–2444

    CAS  PubMed  Google Scholar 

  139. Shman TV, Fedasenka UU, Savitski VP, Aleinikova OV (2008) CD34+ leukemic subpopulation predominantly displays lower spontaneous apoptosis and has higher expression levels of Bcl-2 and MDR1 genes than CD34- cells in childhood AML. Ann Hematol 87:353–360

    CAS  PubMed  Google Scholar 

  140. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    CAS  PubMed  Google Scholar 

  141. Sauerbrey A, Sell W, Steinbach D, Voigt A, Zintl F (2002) Expression of the BCRP gene (ABCG2/MXR/ABCP) in childhood acute lymphoblastic leukaemia. Br J Haematol 118:147–150

    CAS  PubMed  Google Scholar 

  142. Suvannasankha A, Minderman H, O’Loughlin KL et al (2004) Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br J Haematol 127:392–398

    CAS  PubMed  Google Scholar 

  143. Stam RW, van den Heuvel-Eibrink MM, den Boer ML et al (2004) Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein. Leukemia 18:78–83

    CAS  PubMed  Google Scholar 

  144. Kourti M, Vavatsi N, Gombakis N et al (2007) Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol 86:166–173

    CAS  PubMed  Google Scholar 

  145. Graham SM, Jorgensen HG, Allan E et al (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325

    CAS  PubMed  Google Scholar 

  146. Breedveld P, Pluim D, Cipriani G et al (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582

    CAS  PubMed  Google Scholar 

  147. Burger H, Nooter K (2004) Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle 3:1502–1505

    CAS  PubMed  Google Scholar 

  148. Burger H, van Tol H, Brok M et al (2005) Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 4:747–752

    CAS  PubMed  Google Scholar 

  149. Houghton PJ, Germain GS, Harwood FC et al (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337

    CAS  PubMed  Google Scholar 

  150. Brendel C, Scharenberg C, Dohse M et al (2007) Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21:1267–1275

    CAS  PubMed  Google Scholar 

  151. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC (2006) Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 108:1370–1373

    CAS  PubMed  Google Scholar 

  152. Jiang X, Zhao Y, Smith C et al (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21:926–935

    CAS  PubMed  Google Scholar 

  153. White DL, Saunders VA, Dang P et al (2007) Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 110:4064–4072

    CAS  PubMed  Google Scholar 

  154. Wang L, Giannoudis A, Lane S et al (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264

    CAS  PubMed  Google Scholar 

  155. Hiwase DK, Saunders V, Hewett D et al (2008) Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 14:3881–3888

    CAS  PubMed  Google Scholar 

  156. Scheffer GL, Maliepaard M, Pijnenborg AC et al (2000) Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res 60:2589–2593

    CAS  PubMed  Google Scholar 

  157. Diestra JE, Scheffer GL, Catala I et al (2002) Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol 198:213–219

    CAS  PubMed  Google Scholar 

  158. Galimberti S, Nagy B, Benedetti E et al (2007) Evaluation of the MDR1, ABCG2, Topoisomerases IIalpha and GSTpi gene expression in patients affected by aggressive mantle cell lymphoma treated by the R-Hyper-CVAD regimen. Leuk Lymphoma 48:1502–1509

    CAS  PubMed  Google Scholar 

  159. Saglam A, Hayran M, Uner AH (2008) Immunohistochemical expression of multidrug resistance proteins in mature T/NK-cell lymphomas. Apmis 116:791–800

    PubMed  Google Scholar 

  160. Raaijmakers MH, de Grouw EP, Heuver LH et al (2005) Impaired breast cancer resistance protein mediated drug transport in plasma cells in multiple myeloma. Leuk Res 29:1455–1458

    CAS  PubMed  Google Scholar 

  161. Turner JG, Gump JL, Zhang C et al (2006) ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 108:3881–3889

    CAS  PubMed  Google Scholar 

  162. Vander Borght S, van Pelt J, van Malenstein H et al (2008) Up-regulation of breast cancer resistance protein expression in hepatoblastoma following chemotherapy: A study in patients and in vitro. Hepatol Res 38:1112–1121

    PubMed  Google Scholar 

  163. Bart J, Hollema H, Groen HJ et al (2004) The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur J Cancer 40:2064–2070

    CAS  PubMed  Google Scholar 

  164. Tsunoda S, Okumura T, Ito T et al (2006) ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology 71:251–258

    CAS  PubMed  Google Scholar 

  165. Kawabata S, Oka M, Soda H et al (2003) Expression and functional analyses of breast cancer resistance protein in lung cancer. Clin Cancer Res 9:3052–3057

    CAS  PubMed  Google Scholar 

  166. Yoh K, Ishii G, Yokose T et al (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10:1691–1697

    CAS  PubMed  Google Scholar 

  167. Ota S, Ishii G, Goto K et al (2009) Immunohistochemical expression of BCRP and ERCC1 in biopsy specimen predicts survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy. Lung Cancer 64:98–104

    PubMed  Google Scholar 

  168. Kim YH, Ishii G, Goto K et al (2009) Expression of breast cancer resistance protein is associated with a poor clinical outcome in patients with small-cell lung cancer. Lung Cancer 65:105–111

    PubMed  Google Scholar 

  169. Surowiak P, Pawelczyk K, Maciejczyk A et al (2008) Positive correlation between cyclooxygenase 2 and the expression of ABC transporters in non-small cell lung cancer. Anticancer Res 28:2967–2974

    PubMed  Google Scholar 

  170. Chen YC, Hsu HS, Chen YW et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE 3:e2637

    PubMed  Google Scholar 

  171. Candeil L, Gourdier I, Peyron D et al (2004) ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer 109:848–854

    CAS  PubMed  Google Scholar 

  172. Gupta N, Martin PM, Miyauchi S et al (2006) Down-regulation of BCRP/ABCG2 in colorectal and cervical cancer. Biochem Biophys Res Commun 343:571–577

    CAS  PubMed  Google Scholar 

  173. Glasgow SC, Yu J, Carvalho LP et al (2005) Unfavourable expression of pharmacologic markers in mucinous colorectal cancer. Br J Cancer 92:259–264

    CAS  PubMed  Google Scholar 

  174. Nakayama K, Kanzaki A, Ogawa K et al (2002) Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP. Int J Cancer 101:488–495

    CAS  PubMed  Google Scholar 

  175. Diestra JE, Condom E, Del Muro XG et al (2003) Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: biological and clinical implications. J Urol 170:1383–1387

    CAS  PubMed  Google Scholar 

  176. Valera ET, Lucio-Eterovic AK, Neder L et al (2007) Quantitative PCR analysis of the expression profile of genes related to multiple drug resistance in tumors of the central nervous system. J Neurooncol 85:1–10

    CAS  PubMed  Google Scholar 

  177. Wilson MW, Fraga CH, Fuller CE et al (2006) Immunohistochemical detection of multidrug-resistant protein expression in retinoblastoma treated by primary enucleation. Invest Ophthalmol Vis Sci 47:1269–1273

    PubMed  Google Scholar 

  178. Deichmann M, Thome M, Egner U, Hartschuh W, Kurzen H (2005) The chemoresistance gene ABCG2 (MXR/BCRP1/ABCP1) is not expressed in melanomas but in single neuroendocrine carcinomas of the skin. J Cutan Pathol 32:467–473

    PubMed  Google Scholar 

  179. La Porta C (2009) Cancer stem cells: lessons from melanoma. Stem Cell Rev 5:61–65

    PubMed  Google Scholar 

  180. Monzani E, Facchetti F, Galmozzi E et al (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    CAS  PubMed  Google Scholar 

  181. Kanzaki A, Toi M, Nakayama K et al (2001) Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res 92:452–458

    CAS  PubMed  Google Scholar 

  182. Faneyte IF, Kristel PM, Maliepaard M et al (2002) Expression of the breast cancer resistance protein in breast cancer. Clin Cancer Res 8:1068–1074

    CAS  PubMed  Google Scholar 

  183. Burger H, Foekens JA, Look MP et al (2003) RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 9:827–836

    CAS  PubMed  Google Scholar 

  184. Park S, Shimizu C, Shimoyama T et al (2006) Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 99:9–17

    CAS  PubMed  Google Scholar 

  185. Ee PL, Kamalakaran S, Tonetti D et al (2004) Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 64:1247–1251

    CAS  PubMed  Google Scholar 

  186. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233

    CAS  PubMed  Google Scholar 

  187. Chiou SH, Yu CC, Huang CY et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14:4085–4095

    CAS  PubMed  Google Scholar 

  188. Susanto J, Lin YH, Chen YN et al (2008) Porphyrin homeostasis maintained by ABCG2 regulates self-renewal of embryonic stem cells. PLoS ONE 3:e4023

    PubMed  Google Scholar 

  189. Patrawala L, Calhoun T, Schneider-Broussard R et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    CAS  PubMed  Google Scholar 

  190. Wilson CS, Davidson GS, Martin SB et al (2006) Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 108:685–696

    CAS  PubMed  Google Scholar 

  191. Saraiya B, Gounder M, Dutta J et al (2008) Sequential topoisomerase targeting and analysis of mechanisms of resistance to topotecan in patients with acute myelogenous leukemia. Anticancer Drugs 19:411–420

    CAS  PubMed  Google Scholar 

  192. Fazeny-Dorner B, Piribauer M, Wenzel C et al (2003) Cytogenetic and comparative genomic hybridization findings in four cases of breast cancer after neoadjuvant chemotherapy. Cancer Genet Cytogenet 146:161–166

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas D. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ross, D.D., Nakanishi, T. (2010). Impact of Breast Cancer Resistance Protein on Cancer Treatment Outcomes. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics