Skip to main content

Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

  • Protocol
  • First Online:
Biofuels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 581))

Summary

Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobs, B. (1950) Industrial Alcohol. U. S. Department of Agriculture: Washington, DC

    Google Scholar 

  2. Emert, G. H., Katzen, R., Fredrickson, R. E., Kaupisch, K. F., and Yeats, C. E. (1983) Update on the 50 T/D cellulose to-ethanol plant. J. Appl. Polym. Sci. Symp. 37, 787–795

    CAS  Google Scholar 

  3. Reese, E. T. (1976) History of the cellulase program at the U.S. Army Natick Development Center. Biotechnol. Bioeng. Symp. 6, 9–20

    CAS  Google Scholar 

  4. Kuhls, K., Lieckfeldt, E., Samuels, G. J., Kovacs, W., Meyer, W., Petrini, O., Gams, W., Börner, T., and Kubicek, C. P. (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc. Natl. Acad. Sci. U.S.A. 93, 7755–7760

    Article  CAS  Google Scholar 

  5. Gracheck, S. J., Rivers, D. B., Woodford, L. C., Giddings, K. E., and Emert, G. H. (1981) Pretreatment of lignocellulosics to support cellulose production using Trichoderma reesei QM 9414. Biotechnol. Bioeng. Symp 11, 47–65

    CAS  Google Scholar 

  6. Dyess, S. E. and Emert, G. H. (1981) Cellulose, new source of chemicals. In: Encyclopedia of Chemical Processing and Design. Springer: New York, pp. 49–58

    Google Scholar 

  7. Gauss, W. F., Suzuki, S., and Takagi, M. (1976) Manufacture of alcohol from cellulosic materials using plural ferments. US Patent, 3990944

    Google Scholar 

  8. Takagi, M., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977) A Method for Production of Alcohol Directly from Cellulose using Cellulase and Yeast. I.I.T.: New Delhi

    Google Scholar 

  9. Wyman, C. E., Spindler, D. D., and Grohmann, K. (1992) Simultaneous saccharification and fermentation of several lignocellulosic feed stocks to fuel ethanol. Biomass Bioenergy 3, 301–307

    Article  CAS  Google Scholar 

  10. Ingram, L. O. and Doran, J. B. (1994) Conversion of cellulosic material to ethanol. FEMS Microbiol. Rev. 16: 235–241

    Article  Google Scholar 

  11. Wright, J. D. (1989) Evaluation of enzymatic hydrolysis processes. In: Klass, D. L. (Ed.) Energy from Biomass and Wastes XII. Institute of Gas Technology: Chicago, pp. 1247–1276

    Google Scholar 

  12. Gray, K. A., Zhao, L., and Emptage, M. (2006) Bioethanol. Curr. Opin. Chem. Biol. 10, 141–146

    Article  CAS  Google Scholar 

  13. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., and Kammen, D. M. (2006) Ethanol can contribute to energy and environmental goals. Science 311, 506–508

    Article  CAS  Google Scholar 

  14. Barbosa, M. F., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992) Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl. Environ. Microbiol. 58, 1382–1384

    CAS  Google Scholar 

  15. Beall, D. S., Ingram, L. O., Ben-Bassat, A., Doran, J. B., Fowler, D. E., Hall, R. G., and Wood, B. E. (1992) Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14, 857–862

    Article  CAS  Google Scholar 

  16. Becker, D. K., Blotkamp, P. J., and Emert, G. H. (1981) Pilot scale conversion of cellulose to ethanol. In: Klass, D. L. and Emert, G. H. (Eds.) Fuels from Biomass and Wastes. Ann Arbor Science: Ann Arbor, MI, pp. 375–391

    Google Scholar 

  17. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991) Fuel ethanol from cellulosic biomass. Science 251, 1318–1323

    Article  CAS  Google Scholar 

  18. Perlack, R. D. (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply. DOE/GO-102995–2135; ORNL/TM-2005/66

    Google Scholar 

  19. Gorhmann, K. and Himmel, M. E. (1991) Chapter 1. Enzymes for fuels and chemical feedstocks. In: Leatham, G. F. and Himmel, M. E. (Eds.) Enzymes in Biomass Conversion. ACS Symposium series 460, American Chemical Society: Washington, DC, pp. 2–11

    Chapter  Google Scholar 

  20. Eriksson, K.-E. L., Blanchette, R. A., and Ander, P. (1990) Microbial and Enzymatic Degradation of Wood and Wood Components, Springer: New York, NY

    Book  Google Scholar 

  21. Ladish, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb. Technol. 5, 82–102

    Article  Google Scholar 

  22. Beguin, P. (1990) Molecular biology of cellulose degradation. Ann. Rev. Microbiol. 44, 219–248

    Article  CAS  Google Scholar 

  23. Carpita, N. C. and McCann, M. C. (2000) The cell wall. In: Buchanan, B. B., Gruissem, W., and Jones, R. (Eds.) Biochemistry and Molecular Biology of Plants. American Society Plant Physiologists: Rockville, MD, pp. 52–109

    Google Scholar 

  24. Thompson, D. N., Chen, H. C., and Grethlein, H. E. (1992) Comparison of pretreatment methods on the basis of available surface area. Bioresour. Technol. 39, 155–163

    Article  CAS  Google Scholar 

  25. Holtzapple, M. T., Jun, J. E., Ashok, G., Patibabdla, S. L., and Dale, B. E. (1991) The ammonia freeze explosion process. Appl. Biochem. Biotechnol. 28/29, 69–74

    Article  Google Scholar 

  26. Kerstetter, J. D. and Lyons, J. K. (1991), Mixed Waste Paper to Ethand Fuel; Washington State Energy Office: Olympia, WA

    Google Scholar 

  27. Jeffries, T. W. (1988) Physical, chemical, and biological considerations in the biological degradation of wood. In: Kennedy, J. F., Phillips, G. O., and Williams, P. A. (Eds.) Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Wiley: New York, pp. 325–350

    Google Scholar 

  28. Enari, T. M. (1983) Microbial cellulases. In: Fogarty, W. M. (Ed.) Microbial Enzymes and Biotechnology. Elsevier Applied Science: London, vol. 4, pp. 183–223

    Google Scholar 

  29. Akin, D. E. (2007) Grass lignocellulose: strategies to overcome recalcitrance. Appl. Biochem. Biotechnol. 136–140, 3–15

    Article  Google Scholar 

  30. Anderson, W. F., Dien, B. S., Brandon, S. K., and Peterson, J. D. (2007) Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Appl. Biochem. Biotechnol. 145(3–15), doi: 10.1007/s12010-007-8041-y

    Google Scholar 

  31. Ingram, L. O. and Clark, D. P. (1991) Ethanol production using engineered mutant E. coli. USA, patent no. 5028539

    Google Scholar 

Download references

Acknowledgments

We would like to thank undergraduate student researchers in the Peterson lab, Brian Gardner, and Sean Suggs for their excellent fermentation help. The authors also acknowledge the assistance of Patricia O’Bryan at the USDA in Peoria for her assistance with the small-volume fermentation procedures. This work was supported, in part, by funding to JDP from the Traditional Industries Program (TIP3) of Georgia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Doran-Peterson, J., Jangid, A., Brandon, S.K., DeCrescenzo-Henriksen, E., Dien, B., Ingram, L.O. (2009). Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production. In: Mielenz, J. (eds) Biofuels. Methods in Molecular Biology, vol 581. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-214-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-214-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-213-1

  • Online ISBN: 978-1-60761-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics