Skip to main content

Mouse Models of Neurodegenerative Diseases: Criteria and General Methodology

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 602))

Abstract

The major symptom of Alzheimer’s disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.

There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a “one (trans)gene, one disease” interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.

A man is but what he knoweth ,

Sir Francis Bacon (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

Aβ:

β-amyloid peptide

FAD:

amilial Alzheimer’s disease

FTD:

fronto-temporal dementia

FTDP-17:

fronto-temporal dementia with parkinsonism linked to chromosome 17

GLM:

general linear model

MAPT:

microtubule-associated protein Tau

MCI:

mild cognitive impairment

NFT:

neurofibrillary tangles

References

  1. Dubos, R. (1968) So human an animal. Charles Scribner’s Sons, New York.

    Google Scholar 

  2. Alzheimer, A. (1907) Über eine eigenartige Erkankung der Hirnrinde. Allg. Z. Psychiatrie Psychisch-Gerlichtlich Med 64, 146–148.

    Google Scholar 

  3. Stelzmann, R. A., Schnitzlein, H. N. and Murtagh, F. R. (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8, 429–431.

    Article  PubMed  Google Scholar 

  4. Braak, H. and Braak, E. (1994) Pathology of Alzheimer’s disease, in Neurodegenerative diseases (Calne, D. B., ed.). Saunders, Philadelphia, pp. 585–613.

    Google Scholar 

  5. Braak, H. and Braak, E. (1997) Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 18, S85–88.

    Article  PubMed  CAS  Google Scholar 

  6. Kosik, K. S. and Shimura, H. (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739, 298–310.

    PubMed  CAS  Google Scholar 

  7. Lee, V. M., Goedert, M. and Trojanowski, J. Q. (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24, 1121–1159.

    Article  PubMed  CAS  Google Scholar 

  8. Dickson, D. W. (2003) Neurodegeneration: The molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel.

    Google Scholar 

  9. Cotman, C. W. and Su, J. H. (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 6, 493–506.

    Article  PubMed  CAS  Google Scholar 

  10. Terry, R. D. (2006) Alzheimer’s disease and the aging brain. J Geriatr Psychiatry Neurol 19, 125–128.

    Article  PubMed  Google Scholar 

  11. Davies, R. R., Hodges, J. R., Kril, J. J., Patterson, K., Halliday, G. M., et al. (2005) The pathological basis of semantic dementia. Brain 128, 1984–1995.

    Article  PubMed  Google Scholar 

  12. Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., et al. (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739, 198–210.

    PubMed  CAS  Google Scholar 

  13. Albert, M. S. (1996) Cognitive and neurobiologic markers of early Alzheimer’s disease. Proc Natl Acad Sci USA 93, 13547–13551.

    Article  PubMed  CAS  Google Scholar 

  14. Morgan, J. and Sethi, K. D. (2007) Differential diagnosis, in Handbook of Parkinson’s disease (Pahwa, R. and Lyons, K. E., eds.). Informa Healthcare USA, Inc., New York, pp. 29–47.

    Google Scholar 

  15. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., et al. (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56, 303–308.

    Article  PubMed  CAS  Google Scholar 

  16. Knopman, D. S., DeKosky, S. T., Cummings, J. L., Chui, H., Corey-Bloom, J., et al. (2001) Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1143–1153.

    Google Scholar 

  17. Luis, C. A., Loewenstein, D. A., Acevedo, A., Barker, W. W. and Duara, R. (2003) Mild cognitive impairment: directions for future research. Neurology 61, 438–444.

    PubMed  CAS  Google Scholar 

  18. Maruyama, M., Arai, H., Sugita, M., Tanji, H., Higuchi, M., et al. (2001) Cerebrospinal fluid amyloid beta(1-42) levels in the mild cognitive impairment stage of Alzheimer’s disease. Exp Neurol 172, 433–436.

    Article  PubMed  CAS  Google Scholar 

  19. Riemenschneider, M., Lautenschlager, N., Wagenpfeil, S., Diehl, J., Drzezga, A., et al. (2002) Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59, 1729–1734.

    Article  PubMed  CAS  Google Scholar 

  20. Cummings, J. L. (2004) Dementia with lewy bodies: molecular pathogenesis and implications for classification. J Geriatr Psychiatry Neurol 17, 112–119.

    Article  PubMed  Google Scholar 

  21. Victoroff, J., Zarow, C., Mack, W. J., Hsu, E. and Chui, H. C. (1996) Physical aggression is associated with preservation of substantia nigra pars compacta in Alzheimer disease. Arch Neurol 53, 428–434.

    Article  PubMed  CAS  Google Scholar 

  22. Pahwa, R. and Lyons, K. E. (2007) Handbook of Parkinson’s disease. Informa Healthcare USA, Inc., New York.

    Google Scholar 

  23. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., et al. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  24. Morrison, J. H. and Hof, P. R. (1997) Life and death of neurons in the aging brain. Science 278, 412–419.

    Article  PubMed  CAS  Google Scholar 

  25. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R. and Van Hoesen, G. W. (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1, 103–116.

    Article  PubMed  CAS  Google Scholar 

  26. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. and Barnes, C. L. (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampus formation. Science 225, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  27. Horn, R., Ostertun, B., Fric, M., Solymosi, L., Steudel, A., et al. (1996) Atrophy of hippocampus in patients with Alzheimer’s disease and other diseases with memory impairment. Dementia 7, 182–186.

    PubMed  CAS  Google Scholar 

  28. Samuel, W., Terry, R. D., Deteresa, R., Butters, N. and Masliah, E. (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol 51, 772–778.

    Article  PubMed  CAS  Google Scholar 

  29. Karas, G. B., Burton, E. J., Rombouts, S. A., van Schijndel, R. A., O’Brien, J. T., et al. (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18, 895–907.

    Article  PubMed  CAS  Google Scholar 

  30. Jack, C. R., Jr., Shiung, M. M., Gunter, J. L., O’Brien, P. C., Weigand, S. D., et al. (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600.

    PubMed  Google Scholar 

  31. Jope, R. S., Song, L. and Powers, R. E. (1997) Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer’s disease brain. Neurobiol Aging 18, 111–120.

    Article  PubMed  CAS  Google Scholar 

  32. Tong, X. K. and Hamel, E. (1999) Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience 92, 163–175.

    Article  PubMed  CAS  Google Scholar 

  33. Mattson, M. P. and Pedersen, W. A. (1998) Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer’s disease. Int J Develop Neurosci 16, 737–753.

    Article  CAS  Google Scholar 

  34. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., et al. (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261, 6084–6089.

    PubMed  CAS  Google Scholar 

  35. Braak, H. and Braak, E. (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18, 351–357.

    Article  PubMed  CAS  Google Scholar 

  36. Tomlinson, B. E., Blessed, G. and Roth, M. (1968) rvations on the brains of non-demented old people. J Neurol Sci 7, 331–356.

    Article  PubMed  CAS  Google Scholar 

  37. Kidd, M. (1964) Alzheimer’s disease—an electron microscopical study. Brain 87, 307–320.

    Article  PubMed  CAS  Google Scholar 

  38. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. and Klug, A. (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85, 4051–4055.

    Article  PubMed  CAS  Google Scholar 

  39. Kosik, K. S., Joachim, C. L. and Selkoe, D. J. (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83, 4044–4048.

    Article  PubMed  CAS  Google Scholar 

  40. Paulus, W. and Selim, M. (1990) Corticonigral degeneration with neuronal achromasia and basal neurofibrillary tangles. Acta Neuropathol (Berl) 81, 89–94.

    Article  CAS  Google Scholar 

  41. Elizan, T. S., Hirano, A., Abrams, B. M., Need, R. L., Van Nuis, C., et al. (1966) Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam. Neurological reevaluation. Arch Neurol 14, 356–368.

    Article  PubMed  CAS  Google Scholar 

  42. Hirano, A., Malamud, N., Elizan, T. S. and Kurland, L. T. (1966) Amyotrophic lateral sclerosis and Parkinsonism-dementia complex on Guam. Further pathologic studies. Arch Neurol 15, 35–51.

    Article  PubMed  CAS  Google Scholar 

  43. Hof, P. R., Bouras, C., Perl, D. P., Sparks, D. L., Mehta, N., et al. (1995) Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch Neurol 52, 379–391.

    Article  PubMed  CAS  Google Scholar 

  44. Kiuchi, A., Otsuka, N., Namba, Y., Nakano, I. and Tomonaga, M. (1991) Presenile appearance of abundant Alzheimer’s neurofibrillary tangles without senile plaques in the brain in myotonic dystrophy. Acta Neuropathol (Berl) 82, 1–5.

    Article  CAS  Google Scholar 

  45. Mott, R. T., Dickson, D. W., Trojanowski, J. Q., Zhukareva, V., Lee, V. M., et al. (2005) Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol 64, 420–428.

    PubMed  CAS  Google Scholar 

  46. Glenner, G. G. and Wong, C. W. (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120, 885–890.

    Google Scholar 

  47. Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I. and Schenk, D. B. (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem 61, 1965–1968.

    Article  PubMed  CAS  Google Scholar 

  48. Roher, A., Wolfe, D., Palutke, M. and KuKuruga, D. (1986) Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc Natl Acad Sci U S A 83, 2662–2666.

    Article  PubMed  CAS  Google Scholar 

  49. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., et al. (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45–53.

    Article  PubMed  CAS  Google Scholar 

  50. Naslund, J., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., et al. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 283, 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  51. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  52. Chartier-Harlin, M. C., Crawford, F., Hamandi, K., Mullan, M., Goate, A., et al. (1991) Screening for the beta-amyloid precursor protein mutation (APP717: Val—Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci Lett 129, 134–135.

    Article  PubMed  CAS  Google Scholar 

  53. Chartier-Harlin, M. C., Crawford, F., Houlden, H., Warren, A., Hughes, D., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846.

    Article  PubMed  CAS  Google Scholar 

  54. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.

    Article  PubMed  CAS  Google Scholar 

  55. Campion, D., Flaman, J. M., Brice, A., Hannequin, D., Dubois, B., et al. (1995) Mutations of the presenilin I gene in families with early-onset Alzheimer’s disease. Hum Mol Genet 4, 2373–2377.

    Article  PubMed  CAS  Google Scholar 

  56. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.

    Article  PubMed  CAS  Google Scholar 

  57. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376, 775–778.

    Article  PubMed  CAS  Google Scholar 

  58. Clark, L. N., Poorkaj, P., Wszolek, Z., Geschwind, D. H., Nasreddine, Z. S., et al. (1998) Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A 95, 13103–13107.

    Article  PubMed  CAS  Google Scholar 

  59. Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., et al. (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705.

    Article  PubMed  CAS  Google Scholar 

  60. Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A., et al. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S Am 95, 7737–7741.

    Article  CAS  Google Scholar 

  61. Ghetti, B., Hutton, M. and Wszolek, Z. (2003) Frontotemporal Dementia and Parkinsonism Linked to chromosome 17 associated with Tau gene mutations (FTDP-17 T), in Neurodegeneration: The molecular pathology of dementia and movement disorders (Dickson, D., ed.). ISN Neuropath Press, Basel, pp. 81–155.

    Google Scholar 

  62. Goedert, M. and Jakes, R. (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739, 240–250.

    PubMed  CAS  Google Scholar 

  63. Baker, M., Mackenzie, I. R., Pickering-Brown, S. M., Gass, J., Rademakers, R., et al. (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919.

    Article  PubMed  CAS  Google Scholar 

  64. Mendez, M. F. and McMurtray, A. (2006) Frontotemporal dementia-like phenotypes associated with presenilin-1 mutations. Am J Alzheimers Dis Other Demen 21, 281–286.

    Article  PubMed  Google Scholar 

  65. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  66. Greenberg, B. D., Savage, M. J., Howland, D. S., Ali, S. M., Siedlak, S. L., et al. (1996) APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol Aging 17, 153–171.

    Article  PubMed  CAS  Google Scholar 

  67. Ashe, K. (2001) Learning and memory in transgenic mice modelling Alzhiemer’s disease. Learn Mem 8, 301–308.

    Article  PubMed  CAS  Google Scholar 

  68. Ashe, K. H. (2005) Mechanisms of memory loss in Abeta and tau mouse models. Biochem Soc Trans 33, 591–594.

    Article  PubMed  CAS  Google Scholar 

  69. Dodart, J. C., Mathis, C., Bales, K. R. and Paul, S. M. (2002) Does my mouse have Alzheimer’s disease? Genes, Brain Behav 1, 142–155.

    Article  CAS  Google Scholar 

  70. Eriksen, J. L. and Janus, C. G. (2006) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37, 79–100.

    Article  PubMed  Google Scholar 

  71. Higgins, G. A. and Jacobsen, H. (2003) Transgenic mouse models of Alzheimer’s disease: phenotype and application. Behav Pharmacol 14, 419–438.

    PubMed  CAS  Google Scholar 

  72. Janus, C. and Westaway, D. (2001) Transgenic mouse models of Alzheimer’s disease. Physiol Behav 73, 873–886.

    Article  PubMed  CAS  Google Scholar 

  73. Price, D. L. and Sisodia, S. S. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21, 479–505.

    Article  PubMed  CAS  Google Scholar 

  74. Seabrook, G. R. and Rosahl, T. W. (1999) Transgenic animals relevant to Alzheimer’s disease. Neuropharmacology 38, 1–17.

    Article  PubMed  CAS  Google Scholar 

  75. van Leuven, F. (2000) Single and multiple transgenic mice as models for Alzheimer’s disease. Prog Neurobiol 61, 305–312.

    Article  PubMed  Google Scholar 

  76. Spires, T. L. and Hyman, B. T. (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2, 423–437.

    Article  PubMed  Google Scholar 

  77. Wong, P. C., Cai, H., Borchelt, D. R. and Price, D. L. (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 5, 633–639.

    Article  PubMed  CAS  Google Scholar 

  78. Hall, G. F. and Yao, J. (2005) Modeling tauopathy: a range of complementary approaches. Biochim Biophys Acta 1739, 224–239.

    PubMed  CAS  Google Scholar 

  79. Melrose, H. L., Lincoln, S. J., Tyndall, G. M. and Farrer, M. J. (2006) Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173, 196–204.

    Article  PubMed  Google Scholar 

  80. Le Cudennec, C., Faure, A., Ly, M. and Delatour, B. (2008) One-year longitudinal evaluation of sensori-motor functions in APP751SL transgenic mice. Genes Brain Behav 7, 83–91.

    Google Scholar 

  81. Cui, S., Chesson, C. and Hope, R. (1993) Genetic variation within and between strains of outbred Swiss mice. Lab Anim 27, 116–123.

    Article  PubMed  CAS  Google Scholar 

  82. Festing, M. F. (1974) Genetic reliability of commercially-bred laboratory mice. Lab Anim 8, 265–270.

    Article  PubMed  CAS  Google Scholar 

  83. Festing, M. F. (1974) Genetic monitoring of laboratory mouse colonies in the Medical Research Council Accreditation Scheme for the suppliers of laboratory animals. Lab Anim 8, 291–299.

    Article  PubMed  CAS  Google Scholar 

  84. Crabbe, J. C., Wahlsten, D. and Dudek, B. C. (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672.

    Article  PubMed  CAS  Google Scholar 

  85. Wahlsten, D., Metten, P., Phillips, T. J., Boehm, S. L., 2nd, Burkhart-Kasch, S., et al. (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54, 283–311.

    Article  PubMed  Google Scholar 

  86. Banbury Conference on Genetic Background in Mice (1997) Mutant mice and neuroscience: recommendations. Neuron 19, 755–759.

    Article  Google Scholar 

  87. Crawley, J. N., Belknap, J. K., Collins, A., Crabbe, J. C., Frankel, W., et al. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132, 107–124.

    Article  CAS  Google Scholar 

  88. Takahashi, J. S., Pinto, L. H. and Vitaterna, M. H. (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724–1733.

    Article  PubMed  CAS  Google Scholar 

  89. Dietrich, W. F., Lander, E. S., Smith, J. S., Moser, A. R., Gould, K. A., et al. (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639.

    Article  PubMed  CAS  Google Scholar 

  90. Gould, K. A., Luongo, C., Moser, A. R., McNeley, M. K., Borenstein, N., et al. (1996) Genetic evaluation of candidate genes for the Mom1 modifier of intestinal neoplasia in mice. Genetics 144, 1777–1785.

    PubMed  CAS  Google Scholar 

  91. Wahlsten, D., Cooper, S. F. and Crabbe, J. C. (2005) Different rankings of inbred mouse strains on the Morris maze and a refined 4-arm water escape task. Behav Brain Res 165, 36–51.

    Article  PubMed  Google Scholar 

  92. Jimenez, A. J., Garcia-Fernandez, J. M., Gonzalez, B. and Foster, R. G. (1996) The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell Tissue Res 284, 193–202.

    Article  PubMed  CAS  Google Scholar 

  93. Ogilvie, J. M. and Speck, J. D. (2002) Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol Dis 10, 33–40.

    Article  PubMed  CAS  Google Scholar 

  94. Sidman, R. L. and Green, M. C. (1965) Retinal Degeneration in the Mouse: Location of the Rd Locus in Linkage Group Xvii. J Hered 56, 23–29.

    PubMed  CAS  Google Scholar 

  95. Guillery, R. W. (1974) Visual pathways in albinos. Sci Am 230, 44–54.

    Article  PubMed  CAS  Google Scholar 

  96. Rice, D. S., Williams, R. W. and Goldowitz, D. (1995) Genetic control of retinal projections in inbred strains of albino mice. J Comp Neurol 354, 459–469.

    Article  PubMed  CAS  Google Scholar 

  97. Lamb, B. T., Sisodia, S. S., Lawler, A. M., Slunt, H. H., Kitt, C. A., et al. (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat Genet 5, 22–30.

    Article  PubMed  CAS  Google Scholar 

  98. Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., et al. (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. Biol Chem 276, 21562–21570.

    Article  CAS  Google Scholar 

  99. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., et al. (1996) Correlative memory deficits, a-beta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  100. Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., et al. (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218.

    Article  PubMed  CAS  Google Scholar 

  101. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.-H., Mistl, C., et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94, 13287–13292.

    Article  PubMed  CAS  Google Scholar 

  102. Squire, L. R. (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99, 195–231.

    Article  PubMed  CAS  Google Scholar 

  103. Barnes, C. A., Rao, G. and McNaughton, B. L. (1996) Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats. Learn Mem 3, 124–137.

    Article  PubMed  CAS  Google Scholar 

  104. Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  105. Collingridge, G. L., Kehl, S. J. and McLennan, H. (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond) 334, 33–46.

    CAS  Google Scholar 

  106. Eichenbaum, H. (1996) Learning from LTP: a comment on recent attempts to identify cellular and molecular mechanisms of memory. Learn Mem 3, 61–73.

    Article  PubMed  CAS  Google Scholar 

  107. Fazeli, M. S., Errington, M. L., Dolphin, A. C. and Bliss, T. V. P. (1988) Long–term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in protein efflux into push–pull cannula perfusates. Brain Res 473, 51–59.

    Article  PubMed  CAS  Google Scholar 

  108. Malenka, R. C. and Nicoll, R. A. (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16, 521–527.

    Article  PubMed  CAS  Google Scholar 

  109. Morris, R. G. M. (1989) Synaptic plasticity and learning: Selective impairment of learning in rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9, 3040–3057.

    PubMed  CAS  Google Scholar 

  110. Morris, R. G. M. (1990) Toward a representational hypothesis of the role of hippocampal synaptic plasticity in spatial and other forms of learning. Cold Spring Harb Symp Quant Biol 55, 161–173.

    Article  PubMed  CAS  Google Scholar 

  111. O’Keefe, J. and Nadel, L. (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford.

    Google Scholar 

  112. Olton, D. S., Becker, J. T. and Handelman, G. E. (1979) Hippocampus space and memory. Behav Brain Sci 2, 313–365.

    Article  Google Scholar 

  113. Milner, B. S., W.B. (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiat 20, 11–21.

    Article  PubMed  Google Scholar 

  114. Smith, M. L. and Milner, B. (1981) The role of the right hippocampus in the recall of spatial location. Neuropsychologia 19, 781–793.

    Article  PubMed  CAS  Google Scholar 

  115. Milner, B. (1965) Visually-guided maze-learning in man: effects of bilateral hippocampal, bilateral frontal hippocampal lesions. Neuropsychologia 3, 317–338.

    Article  Google Scholar 

  116. Elgh, E., Lindqvist Astot, A., Fagerlund, M., Eriksson, S., Olsson, T., et al. (2006) Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry 59, 155–161.

    Article  PubMed  CAS  Google Scholar 

  117. Rodriguez, G., Vitali, P., Calvini, P., Bordoni, C., Girtler, N., et al. (2000) Hippocampal perfusion in mild Alzheimer’s disease. Psychiatry Res 100, 65–74.

    Article  PubMed  CAS  Google Scholar 

  118. Carlesimo, G. A., Mauri, M., Graceffa, A. M., Fadda, L., Loasses, A., et al. (1998) Memory performances in young, elderly, and very old healthy individuals versus patients with Alzheimer’s disease: evidence for discontinuity between normal and pathological aging. J Clin Exp Neuropsychol 20, 14–29.

    Article  PubMed  CAS  Google Scholar 

  119. Ghilardi, M. F., Alberoni, M., Marelli, S., Rossi, M., Franceschi, M., et al. (1999) Impaired movement control in Alzheimer’s disease. Neurosci Lett 260, 45–48.

    Article  PubMed  CAS  Google Scholar 

  120. Kavcic, V. and Duffy, C. J. (2003) Attentional dynamics and visual perception: mechanisms of spatial disorientation in Alzheimer’s disease. Brain 126, 1173–1181.

    Article  PubMed  Google Scholar 

  121. Monacelli, A. M., Cushman, L. A., Kavcic, V. and Duffy, C. J. (2003) Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61, 1491–1497.

    PubMed  Google Scholar 

  122. Pai, M. C. and Jacobs, W. J. (2004) Topographical disorientation in community-residing patients with Alzheimer’s disease. Int J Geriatr Psychiatry 19, 250–255.

    Article  PubMed  Google Scholar 

  123. Rizzo, M., Anderson, S. W., Dawson, J. and Nawrot, M. (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38, 1157–1169.

    Article  PubMed  CAS  Google Scholar 

  124. Crawley, J. N. (2007) What’s wrong with my mouse?: Behavioural phenotypying of transgenic and knockout mice, 2nd ed. John Wiley & Sons, Inc., New Jersey.

    Google Scholar 

  125. Whishaw, I. Q. and Kolb, B. (2005) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Inc., Oxford.

    Google Scholar 

  126. Crawley, J. N. and Paylor, R. (1997) A proposed test battery and constellation of specific behavioral paradigms to investigate the behavioural phenotypes of transgenic and knockout mice. Horm Behav 31, 197–211.

    Article  PubMed  CAS  Google Scholar 

  127. Janus, C. (2004) Search strategies used by APP transgenic mice during spatial navigation in the Morris water maze. Learn Mem 11, 337–346.

    Article  PubMed  Google Scholar 

  128. Markowska, A. L., Long, J. M., Johnson, C. T. and Olton, D. S. (1993) Variable-interval probe test as a tool for repeated measurements of spatial memory in the water maze. Behav Neurosci 107, 627–632.

    Article  PubMed  CAS  Google Scholar 

  129. Spooner, R. I. W., Thomson, A., Morris, R. G. M. and Salter, S. H. (1994) The Atlantis platform: a new design and further developments of Buresova’s on-demand platform for the water maze. Learn Mem 1, 203–211.

    PubMed  CAS  Google Scholar 

  130. Dudchenko, P. A., Goodridge, J. P., Seiterle, D. A. and Taube, J. S. (1997) Effects of repeated disorientation on the acquisition of spatial tasks in rats: dissociation between the appetetive radial arm maze and aversive water maze. J Exp Psychol 23, 194–210.

    CAS  Google Scholar 

  131. Chapillon, P. and Debouzie, A. (2000) BALB/c mice are not so bad in the Morris water maze. Behav Brain Res 117, 115–118.

    Article  PubMed  CAS  Google Scholar 

  132. Whishaw, I. Q. and Tomie, J. A. (1996) Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  133. Wahlsten, D., Metten, P. and Crabbe, J. C. (2003) A rating scale for wildness and ease of handling laboratory mice: results for 21 inbred strains tested in two laboratories. Genes Brain Behav 2, 71–79.

    Article  PubMed  CAS  Google Scholar 

  134. Corcoran, K. A., Lu, Y., Turner, R. S. and Maren, S. (2002) Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer’s disease. Learn Mem 9, 243–252.

    Article  PubMed  Google Scholar 

  135. Janus, C., Welzl, H., Hanna, A., Lovasic, L., Lane, N., et al. (2004) Impaired conditioned taste aversion learning in APP transgenic mice. Neurobiol Aging 25, 1213–1219.

    Article  PubMed  Google Scholar 

  136. Mumby, D. G. (2001) Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res 127, 159–181.

    Article  PubMed  CAS  Google Scholar 

  137. Kumar-Singh, S., Dewachter, I., Moechars, D., Lubke, U., De Jonghe, C., et al. (2000) Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 7, 9–22.

    Article  PubMed  CAS  Google Scholar 

  138. Lalonde, R., Dumont, M., Staufenbiel, M., Sturchler-Pierrat, C. and Strazielle, C. (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956, 36–44.

    Article  PubMed  CAS  Google Scholar 

  139. Gerlai, R., Fitch, T., Bales, K. R. and Gitter, B. D. (2002) Behavioral impairment of APP(V717F) mice in fear conditioning: is it only cognition? Behav Brain Res 136, 503–509.

    Article  PubMed  Google Scholar 

  140. Wahlsten, D., Bachmanov, A., Finn, D. A. and Crabbe, J. C. (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci U S A 103, 16364–16369.

    Article  PubMed  CAS  Google Scholar 

  141. Scott, S., Kranz, J. E., Cole, J., Lincecum, J. M., Thompson, K., et al. (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9, 4–15.

    Article  PubMed  CAS  Google Scholar 

  142. Sprinthall, R. C. (1987) Basic statistical analysis, 2nd ed. Addison-Wesley, Reading MA.

    Google Scholar 

  143. Machlis, L., Dodd, F. W. D. and Fentress, J. C. (1985) The pooling fallacy: problems arising when individuals contribute more than one observation to the data set. Zeitschrifte fur Tierpsychologie 68, 201–214.

    Google Scholar 

  144. Stevens, J. (1990) Intermediate statistics: a modern approach. Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale, New Jersey.

    Google Scholar 

  145. Popper, K. (1963) Conjectures and refutations. Routledge and Keagan paul, London.

    Google Scholar 

  146. Benatar, M. (2007) Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26, 1–13.

    Article  PubMed  CAS  Google Scholar 

  147. Rogers, D. C., Fisher, E. M., Brown, S. D., Peters, J., Hunter, A. J., et al. (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8, 711–713.

    Article  PubMed  CAS  Google Scholar 

  148. Morris, R. (1984) Developments of a water-maze procedure for studying spatal learning in the rat. J Neurosci Methods 11, 47–60.

    Article  PubMed  CAS  Google Scholar 

  149. Morris, R. G. M. (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12, 239–260.

    Article  Google Scholar 

  150. Wolfer, D. P. and Lipp, H. P. (2000) Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment. Exp Physiol 85, 627–634.

    Article  PubMed  CAS  Google Scholar 

  151. Gass, P., Wolfer, D. P., Balschun, D., Rudolph, D., Frey, U., et al. (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn Mem 5, 274–288.

    PubMed  CAS  Google Scholar 

  152. Wehner, J. M., Sleight, S. and Upchurch, M. (1990) Hippocampal protein kinase C activity is reduced in poor spatial learners. Brain Res 523, 181–187.

    Article  PubMed  CAS  Google Scholar 

  153. Westerman, M. A., Cooper-Blacketer, D., Mariash, A., Kotilinek, L., Kawarabayashi, T., et al. (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22, 1858–1867.

    PubMed  CAS  Google Scholar 

  154. Chen, G. Q., Chen, K. S., Knox, J., Inglis, J., Bernard, A., et al. (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408, 975–979.

    Article  PubMed  CAS  Google Scholar 

  155. Logue, S. F., Paylor, R. and Wehner, J. M. (1997) Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 111, 104–113.

    Article  PubMed  CAS  Google Scholar 

  156. Bohut, M. C., Soffié, M. and Poucet, B. (1989) Scopolamine affects the cognitive processes involved in selective object exploration more than locomotor activity. Psychobiology 17, 409–417.

    Google Scholar 

  157. Save, E., Poucet, B., Foreman, N. and M-C., B. (1992) Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav Neurosci 106, 447–456.

    Article  PubMed  CAS  Google Scholar 

  158. Hammond, R. S., Tull, L. E. and Stackman, R. W. (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82, 26–34.

    Article  PubMed  Google Scholar 

  159. Vnek, N. and Rothblat, L. A. (1996) The hippocampus and long-term object memory in the rat. J Neurosci 16, 2780–2787.

    PubMed  CAS  Google Scholar 

  160. LeDoux, J. E. (1993) Emotional memory systems in the brain. Behav Brain Res 58, 69-79.

    Article  PubMed  CAS  Google Scholar 

  161. Phillips, R. G. and Ledoux, J. E. (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106, 274–285.

    Article  PubMed  CAS  Google Scholar 

  162. LeDoux, J. E. (2000) Emotion circuits in the brain. Annu Rev Neurosci 23, 155–184.

    Article  PubMed  CAS  Google Scholar 

  163. Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., et al. (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4, 724–731.

    Article  PubMed  CAS  Google Scholar 

  164. McEchron, M. D., Bouwmeester, H., Tseng, W., Weiss, C. and Disterhoft, J. F. (1998) Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus 8,1 638–646.

    Article  PubMed  CAS  Google Scholar 

  165. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., et al. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.

    Article  PubMed  CAS  Google Scholar 

  166. Garcia, J., Hankins, W. G. and Rusinak, K. W. (1976) Flavor aversion studies. Science 192, 265–266.

    Article  PubMed  CAS  Google Scholar 

  167. Revusky, S. H. and Bedarf, E. W. (1967) Association of illness with prior ingestion of novel foods. Science 155, 212–214.

    Article  Google Scholar 

  168. Rozin, P. and Kalat, J. W. (1971) Specific hungers and poison avoidance as adaptive specializations of learning. Psychol Rev 78, 459–486.

    Article  PubMed  CAS  Google Scholar 

  169. Garcia, J., Kimeldorf, D. J. and Koeling, R. A. (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122.

    Google Scholar 

  170. Bures, J., Bermudez-Rattoni, F. and Yanamoto, T. (1998) Conditioned taste aversion: memory of a special kind. Oxford University Press, Oxford.

    Book  Google Scholar 

  171. Rosenblum, K., Meiri, N. and Dudai, Y. (1993) Taste memory: the role of protein synthesis in gustatory cortex. Behav Neural Biol 59, 49–56.

    Article  PubMed  CAS  Google Scholar 

  172. Kruger, L. and Mantyh, P. W. (1989) Gustatory and related chemosensory systems, in Integrated systems of the CNS, Part II (Björklund, A., Hökfelt, T. and Swanson, L. W., eds.). Elsevier Science Publishers, Amsterdam, pp. 323–411.

    Google Scholar 

  173. Lamprecht, R. and Dudai, Y. (1996) Transient expression of c-Fos in rat amygdala during training is required for encoding conditioned taste aversion memory. Learn Mem 3, 31–41.

    Article  PubMed  CAS  Google Scholar 

  174. Lamprecht, R., Hazvi, S. and Dudai, Y. (1997) cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci 17, 8443–8450.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Amanda Hanna, Heather Melrose, Douglas Wahlsten, and Alexander Gaukhman for valuable comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Janus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Janus, C., Welzl, H. (2010). Mouse Models of Neurodegenerative Diseases: Criteria and General Methodology. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 602. Humana Press. https://doi.org/10.1007/978-1-60761-058-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-058-8_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-057-1

  • Online ISBN: 978-1-60761-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics