Skip to main content

Experimental Models of Anxiety for Drug Discovery and Brain Research

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Abstract

Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warnick, J. E. and Sufka, K. J. (2008) Animal models of anxiety: examining their validity, utility, and ethical characteristics, in Behavioral models in stress research (Kalueff, A. V. and LaPorte, J. L., eds.). Nova Biomedical Books, New York, pp. 55–71.

    Google Scholar 

  2. Flint, J. (2003) Animal models of anxiety and their molecular dissection. Semin Cell Dev Biol 14, 37–42.

    Article  PubMed  CAS  Google Scholar 

  3. Ohl, F. (2005) Animal models of anxiety. Handb Exp Pharmacol 169, 35–69.

    Google Scholar 

  4. Sousa, N., Almeida, O. F. and Wotjak, C. T. (2006) A hitchhiker's guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5 Suppl 2, 5–24.

    PubMed  Google Scholar 

  5. Borsini, F., Podhorna, J. and Marazziti, D. (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl) 163, 121–141.

    Article  CAS  Google Scholar 

  6. De Boer, S. F. and Koolhaas, J. M. (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463, 145–161.

    Article  PubMed  Google Scholar 

  7. Falls, W. A., Carlson, S., Turner, J. G. and Willott, J. F. (1997) Fear-potentiated startle in two strains of inbred mice. Behav Neurosci 111, 855–861.

    Article  PubMed  CAS  Google Scholar 

  8. Kalueff, A. V., Aldridge, J. W., LaPorte, J. L., Murphy, D. L. and Tuohimaa, P. (2007) Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2, 2538–2544.

    Article  PubMed  CAS  Google Scholar 

  9. Walf, A. A. and Frye, C. A. (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2, 322–328.

    Article  PubMed  CAS  Google Scholar 

  10. Deacon, R. M. (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1, 936–946.

    Article  PubMed  Google Scholar 

  11. Hagenbuch, N., Feldon, J. and Yee, B. K. (2006) Use of the elevated plus-maze test with opaque or transparent walls in the detection of mouse strain differences and the anxiolytic effects of diazepam. Behav Pharmacol 17, 31–41.

    Article  PubMed  CAS  Google Scholar 

  12. Karl, T., Duffy, L. and Herzog, H. (2008) Behavioural profile of a new mouse model for NPY deficiency. Eur J Neurosci 28, 173–180.

    Article  PubMed  Google Scholar 

  13. Archer, T., Fredriksson, A., Lewander, T. and Soderberg, U. (1987) Marble burying and spontaneous motor activity in mice: interactions over days and the effect of diazepam. Scand J Psychol 28, 242–249.

    Article  PubMed  CAS  Google Scholar 

  14. Deacon, R. M. (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1, 122–124.

    Article  PubMed  CAS  Google Scholar 

  15. Nicolas, L. B., Kolb, Y. and Prinssen, E. P. (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547, 106–115.

    Article  PubMed  CAS  Google Scholar 

  16. Njung'e, K. and Handley, S. L. (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38, 63–67.

    Article  PubMed  Google Scholar 

  17. Mikics, E., Baranyi, J. and Haller, J. (2008) Rats exposed to traumatic stress bury unfamiliar objects–a novel measure of hyper-vigilance in PTSD models? Physiol Behav 94, 341–348.

    Article  PubMed  CAS  Google Scholar 

  18. Halberstadt, A. L. and Geyer, M. A. (2008) Habituation and sensitization of acoustic startle: opposite influences of dopamine D(1) and D(2)-family receptors. Neurobiol Learn Mem.

    Google Scholar 

  19. Kalueff, A. V., Keisala, T., Minasyan, A., Kumar, S. R., LaPorte, J. L., et al. (2008) The regular and light-dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents. Nat Protoc 3, 129–136.

    Article  PubMed  CAS  Google Scholar 

  20. Kalueff, A. V. and Tuohimaa, P. (2005) The Suok (“ropewalking") murine test of anxiety. Brain Res Brain Res Protoc 14, 87–99.

    Article  PubMed  Google Scholar 

  21. Bouwknecht, J. A., Olivier, B. and Paylor, R. E. (2007) The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev 31, 41–59.

    Article  CAS  Google Scholar 

  22. Kliethermes, C. L. and Crabbe, J. C. (2006) Pharmacological and genetic influences on hole-board behaviors in mice. Pharmacol Biochem Behav 85, 57–65.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, M., Augustsson, H., Markham, C. M., Hubbard, D. T., Webster, D., et al. (2004) The rat exposure test: a model of mouse defensive behaviors. Physiol Behav 81, 465–473.

    Article  PubMed  CAS  Google Scholar 

  24. Powell, S. B., Geyer, M. A., Gallagher, D. and Paulus, M. P. (2004) The balance between approach and avoidance behaviors in a novel object exploration paradigm in mice. Behav Brain Res 152, 341–349.

    Article  PubMed  Google Scholar 

  25. Martinez, J. A., Francis, G., Liu, W., Pradzinsky, N., Fine, J., et al. (2008) Intranasal delivery of insulin and a nitric oxide synthase inhibitor in an experimental model of amyotrophic lateral sclerosis. Neuroscience.

    Google Scholar 

  26. Ito, N., Nagai, T., Oikawa, T., Yamada, H. and Hanawa, T. (2008) Antidepressant-like effect of l-perillaldehyde in stress-induced depression-like model mice through regulation of the olfactory nervous system. Evid Based Complement Alternat Med.

    Google Scholar 

  27. De Souza Silva, M., Topic, B., Huston, J. and Mattern, C. (2008) Intranasal dopamine application increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor activity in the open field. Synapse 62, 176–184.

    Article  PubMed  Google Scholar 

  28. Buddenberg, T. E., Topic, B., Mahlberg, E. D., de Souza Silva, M. A., Huston, J. P., et al. (2008) Behavioral actions of intranasal application of dopamine: effects on forced swimming, elevated plus-maze and open field parameters. Neuropsychobiology 57, 70–79.

    Article  PubMed  Google Scholar 

  29. Broekkamp, C. L., Rijk, H. W., Joly-Gelouin, D. and Lloyd, K. L. (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126, 223–229.

    Article  PubMed  CAS  Google Scholar 

  30. Bruins Slot, L. A., Bardin, L., Auclair, A. L., Depoortere, R. and Newman-Tancredi, A. (2008) Effects of antipsychotics and reference monoaminergic ligands on marble burying behavior in mice. Behav Pharmacol 19, 145–152.

    Article  PubMed  CAS  Google Scholar 

  31. Bespalov, A. Y., van Gaalen, M. M., Sukhotina, I. A., Wicke, K., Mezler, M., et al. (2008) Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. Eur J Pharmacol.

    Google Scholar 

  32. Gordon, C. J. (2004) Effect of cage bedding on temperature regulation and metabolism of group-housed female mice. Comp Med 54, 63–68.

    PubMed  CAS  Google Scholar 

  33. Li, X., Morrow, D. and Witkin, J. M. (2006) Decreases in nestle shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sci 78, 1933–1939.

    Article  PubMed  CAS  Google Scholar 

  34. Olivier, B., Zethof, T., Pattij, T., van Boogaert, M., van Oorschot, R., et al. (2003) Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 463, 117–132.

    Article  PubMed  CAS  Google Scholar 

  35. Kort, W. J., Hekking-Weijma, J. M., TenKate, M. T., Sorm, V., and VanStrik, R. (1998) A microchip implant system as a method to determine body temperature of terminally ill rats and mice. Lab Anim 32, 9.

    Article  Google Scholar 

  36. Klebaur, J. E. and Bardo, M. T. (1999) The effects of anxiolytic drugs on novelty-induced place preference. Behav Brain Res 101, 51–57.

    Article  PubMed  CAS  Google Scholar 

  37. Kalueff, A. V. and Murphy, D. L. (2007) The importance of cognitive phenotypes in experimental modeling of animal anxiety and depression. Neural Plast 2007, 1–7.

    Google Scholar 

  38. Paylor, R. and Crawley, J. N. (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132, 169–180.

    Article  CAS  Google Scholar 

  39. Bolivar, V. J., Walters, S. R. and Phoenix, J. L. (2007) Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 176, 21–26.

    Article  PubMed  Google Scholar 

  40. zeng, Y. Q., Zhou, Z. Y., He, X., Wang, H., Guo, X. L., et al. (2008) Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res.

    Google Scholar 

  41. Bouwknecht, J. A. and Paylor, R. (2002) Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains. Behav Brain Res 136, 489–501.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NARSAD YI Award to AVK and by Stress Physiology and Research Center (SPaRC) of Georgetown University Medical School.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hart, P.C. et al. (2010). Experimental Models of Anxiety for Drug Discovery and Brain Research. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 602. Humana Press. https://doi.org/10.1007/978-1-60761-058-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-058-8_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-057-1

  • Online ISBN: 978-1-60761-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics