Skip to main content

Experimental Design

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 41))

Summary

This chapter addresses issues particular to the optimal design of fMRI experiments. It describes procedures for isolating the psychological process of interest and gives an overview of block, event-related, and participant-response dependent designs. An additional focus is placed on data analysis with emphasis on optimizing and isolating the neuroimaging signal in activated brain regions. Finally, the chapter addresses a number of practical matters including optimal sample sizes and trial durations that confront all researchers when designing their experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Helmchen C, Mohr C, Erdmann C, Binkofski F, Buchel C. Neural activity related to self- versus externally generated painful stimuli reveals distinct differences in the lateral pain system in a parametric fMRI study. Hum Brain Mapp 2006;27:755–765.

    Article  PubMed  Google Scholar 

  2. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997;5:49–62.

    Article  PubMed  CAS  Google Scholar 

  3. Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 1997;5:261–270.

    Article  PubMed  CAS  Google Scholar 

  4. Garavan H, Ross TJ, Murphy K, Roche RA, Stein EA. Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 2002;17:1820–1829.

    Article  PubMed  CAS  Google Scholar 

  5. Donaldson DI, Petersen SE, Ollinger JM, Buckner RL. Dissociating state and item components of recognition memory using fMRI. Neuroimage 2001;13:129–142.

    Article  PubMed  CAS  Google Scholar 

  6. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 2007;37:579–588.

    Article  PubMed  Google Scholar 

  7. Weiskopf N, Veit R, Erb M, et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 2003;19:577–586.

    Article  PubMed  Google Scholar 

  8. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R. Intersubject synchronization of cortical activity during natural vision. Science 2004;303:1634–1640.

    Article  PubMed  CAS  Google Scholar 

  9. Slotnick SD, Yantis S. Common neural substrates for the control and effects of visual attention and perceptual bistability. Brain Res Cogn Brain Res 2005;24:97–108.

    Article  PubMed  Google Scholar 

  10. Hahn B, Ross TJ, Stein EA. Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex 2007;17:1664–1671.

    Article  PubMed  Google Scholar 

  11. Risinger RC, Salmeron BJ, Ross TJ, et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 2005;26:1097–1108.

    Article  PubMed  Google Scholar 

  12. Kampe KK, Frith CD, Frith U. “Hey John”: signals conveying communicative intention toward the self activate brain regions associated with “mentalizing,” regardless of modality. J Neurosci 2003;23:5258–5263.

    PubMed  CAS  Google Scholar 

  13. Murphy K, Garavan H. Artifactual fMRI group and condition differences driven by performance confounds. Neuroimage 2004;21:219–228.

    Article  PubMed  CAS  Google Scholar 

  14. Poldrack RA. Imaging brain plasticity: conceptual and methodological issues – a theoretical review. Neuroimage 2000;12:1–13.

    Article  PubMed  CAS  Google Scholar 

  15. Kelly AM, Garavan H. Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 2005;15:1089–1102.

    Article  PubMed  Google Scholar 

  16. Friston KJ, Holmes AP, Worsley KJ. How many subjects constitute a study? Neuroimage 1999;10:1–5.

    Article  PubMed  CAS  Google Scholar 

  17. Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 2002;118:115–128.

    Article  PubMed  Google Scholar 

  18. Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 2007;35:105–120.

    Article  PubMed  Google Scholar 

  19. Murphy K, Garavan H. An empirical investigation into the number of subjects required for an event-related fMRI study. Neuroimage 2004;22:879–885.

    Article  PubMed  Google Scholar 

  20. Saad ZS, Ropella KM, DeYoe EA, Bandettini PA. The spatial extent of the BOLD response. Neuroimage 2003;19:132–144.

    Article  PubMed  Google Scholar 

  21. Huettel SA, McCarthy G. The effects of single-trial averaging upon the spatial extent of fMRI activation. Neuroreport 2001;12:2411–2416.

    Article  PubMed  CAS  Google Scholar 

  22. Murphy K, Garavan H. Deriving the optimal number of events for an event-related fMRI study based on the spatial extent of activation. Neuroimage 2005;27:771–777.

    Article  PubMed  Google Scholar 

  23. Murphy K, Bodurka J, Bandettini PA. How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 2007;34:565–574.

    Article  PubMed  Google Scholar 

  24. Cohen MS. Parametric analysis of fMRI data using linear systems methods. Neuroimage 1997;6:93–103.

    Article  PubMed  CAS  Google Scholar 

  25. Friston KJ, Holmes AP, Poline JB, et al. Analysis of fMRI time-series revisited. Neuroimage 1995;2:45–53.

    Article  PubMed  CAS  Google Scholar 

  26. Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited – again. Neuroimage 1995;2:173–181.

    Article  PubMed  CAS  Google Scholar 

  27. Smith S, Jenkinson M, Beckmann C, Miller K, Woolrich M. Meaningful design and contrast estimability in FMRI. Neuroimage 2007;34:127–136.

    Article  PubMed  Google Scholar 

  28. Bandettini PA, Cox RW. Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 2000;43:540–548.

    Article  PubMed  CAS  Google Scholar 

  29. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing.Neuroimage 2000;11:735–759.

    Article  PubMed  CAS  Google Scholar 

  30. Dale AM. Optimal experimental design for event-related fMRI. Hum Brain Mapp 1999;8:109–114.

    Article  PubMed  CAS  Google Scholar 

  31. Birn RM, Cox RW, Bandettini PA. Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage 2002;15:252–264.

    Article  PubMed  Google Scholar 

  32. Liu TT, Frank LR, Wong EC, Buxton RB. Detection power, estimation efficiency, and predictability in event-related fMRI. Neuroimage 2001;13:759–773.

    Article  PubMed  CAS  Google Scholar 

  33. Wager TD, Nichols TE. Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 2003;18:293–309.

    Article  PubMed  Google Scholar 

  34. Liu TT. Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: Design of experiments. Neuroimage 2004;21:401–413.

    Article  PubMed  Google Scholar 

  35. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000;44:162–167.

    Article  PubMed  CAS  Google Scholar 

  36. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 2006;31:1536–1548.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Garavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garavan, H., Murphy, K. (2009). Experimental Design. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics