Skip to main content

Wnt Signaling in the Early Sea Urchin Embryo

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 469))

Abstract

Wnt signaling regulates a remarkably diverse array of cellular and developmental events during animal embryogenesis and homeostasis. The crucial role that Wnt signaling plays in regulating axial patterning in early embryos has been particularly striking. Recent work has highlighted the conserved role that canonical Wnt signaling plays in patterning the animal–vegetal (A–V) axis in sea urchin and sea anemone embryos. In sea urchin embryos, the canonical Wnt signaling pathway is selectively turned on in vegetal cells as early as the 16-cell stage embryo, and signaling through this pathway is required for activation of the endomesodermal gene regulatory network. Loss of nuclear ß -catenin signaling animalizes the sea urchin embryo and blocks pattern formation along the entire A–V axis. Nuclear entry of ß -catenin into vegetal cells is regulated cell autonomously by maternal information that is present at the vegetal pole of the unfertilized egg. Analysis of Dishevelled (Dsh) regulation along the A–V axis has revealed the presence of a cytoarchitectural domain at the vegetal pole of the unfertilized sea urchin egg. This vegetal cortical domain appears to be crucial for the localized activation of Dsh at the vegetal pole, but the precise mechanisms are unknown. The elucidation of how Dsh is selectively activated at the vegetal cortical domain is likely to provide important insight into how this enigmatic protein is regulated during canonical Wnt signaling. Additionally, this information will shed light on the origins of embryonic polarity during animal evolution. This chapter examines the roles played by the canonical Wnt signaling pathway in the specification and patterning of the A–V axis in the sea urchin. These studies have led to the identification of a novel role for canonical Wnt signaling in regulating protein stability, and continued studies of Wnt signaling in this model system are likely to reveal additional roles for this pathway in regulating early patterning events in embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein, B., Freeman, G. (1996) Axis specification in animal development.BioEs-says19, 105–116.

    Article  Google Scholar 

  2. Martindale, M. Q. (2005) The evolution of metazoan axial properties.Nat Rev Genet6, 917–927.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, P. N., Kumburegama, S., Marlow, H. Q., et al. (2007) Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled.Dev. Biol. 310, 169–186.

    Article  PubMed  CAS  Google Scholar 

  4. Wikramanayake, A. H., Huang, L., Klein, W. H. (1998) ß -catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.Proc Natl Acad Sci USA95, 9343–9348.

    Article  PubMed  CAS  Google Scholar 

  5. Wikramanayake, A. H., Hong, M., Lee, P. N., et al. (2003) An ancient role for ß -catenin in the evolution of axial polarity and germ layer segregation.Nature426, 446;450.

    Article  PubMed  CAS  Google Scholar 

  6. Boveri, T. (1901) Uber die Polaritat des Seeigel-Eies.Verh Phys Med Ges Wurzburg34, 145–176.

    Google Scholar 

  7. Horstadius, S. (1939) The mechanisms of sea urchin development studies by operative methods.Biol Rev Cambridge Phil Soc14, 132–179.

    Article  Google Scholar 

  8. Horstadius, S. (1973) Experimental embryology of echinoderms.Oxford:Clarendon Press.

    Google Scholar 

  9. Davidson, E. H., Cameron, R. A., Ran-sick, A. (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms.Development125, 3269–3290.

    PubMed  CAS  Google Scholar 

  10. Logan, C. Y., Miller, J. R., Ferkowicz, M. J., et al. (1999) Nuclear ß -catenin is required to specify vegetal cell fates in the sea urchin embryo.Development126, 345–357.

    PubMed  CAS  Google Scholar 

  11. Weitzel, H. E., Illies, M. R., Byrum, C. A., et al. (2004) Differential stability of bcatenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.Development131, 2947–2956.

    Article  PubMed  CAS  Google Scholar 

  12. Duboc, V., Rottinger, E., Besnardeau, L., Lepage, T. (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.Dev Cell6, 397–410.

    Article  PubMed  CAS  Google Scholar 

  13. McClay, D. R., Peterson, R. E., Range, R. C., et al. (2000) A micromere induction signal is activated by ß -catenin and acts through Notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.Development127, 5113–5122.

    PubMed  CAS  Google Scholar 

  14. Ku, M., Melton, D. (1993) Xwnt11: a maternally expressed Xenopus Wnt gene.Development119, 1161–1173.

    PubMed  CAS  Google Scholar 

  15. Tao, Q., Yokota, C., Puck, H., et al. (2005) Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos.Cell120, 857–871.

    Article  PubMed  CAS  Google Scholar 

  16. Croce, J. C., Wu, S., Byrum, C., et al. (2006) A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus.Dev Biol300, 121–131.

    Article  PubMed  CAS  Google Scholar 

  17. Wikramanayake, A. H., Peterson, R., Chen, J., et al. (2004) Nuclear ß catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.Genesis39, 194–205.

    Article  PubMed  CAS  Google Scholar 

  18. Croce, J., Duloquin, L., Lhomond, G., et al. (2005) Frizzled 5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.Development133, 547–557.

    Article  Google Scholar 

  19. Emily-Fenouil, F., Ghiglione, C., Lhomond, G., et al. (1998) GSK3 ß /shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.Development125, 2489–2498.

    PubMed  CAS  Google Scholar 

  20. Huang, L., Li, X., El-Hodiri, H. M., et al. (2000) Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins.Dev Genes Evol210, 73–81.

    Article  PubMed  CAS  Google Scholar 

  21. Vonica, A., Weng, W., Gumbiner, B. M., et al. (2000) TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.Dev Biol217, 230–243.

    Article  PubMed  CAS  Google Scholar 

  22. Range, R. C., Venuti, J. M., McClay, D. R. (2005) LvGroucho and nuclear beta-cat-enin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.Dev Biol279, 252–267.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, J. R., McClay, D. R. (1997) Changes of pattern adherence junction associated catenin accompany morphogenesis in the sea urchin embryo.Dev Biol192, 323–339.

    Article  PubMed  CAS  Google Scholar 

  24. Dominguez, I., Green, J. B. A. (2000). Dorsal downregulation of GSK3 ß by a non-Wnt-like mechanism is an early consequence of cortical rotation in early Xenopus embryos.Development127, 861–868.

    PubMed  CAS  Google Scholar 

  25. Kumburegama, S., Wikramanayake, A. H. (2007) Specification and patterning of the animal-vegetal axis in sea urchins by the canonical Wnt signaling pathway.Signal Trans7, 164–173.

    Article  CAS  Google Scholar 

  26. Wallingford, J. B., Habas, R. (2005) The development biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity.Development132, 4421–4436.

    Article  PubMed  CAS  Google Scholar 

  27. Wharton, K. A. (2003) Runnin with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction.Dev Biol253, 1–17.

    Article  PubMed  CAS  Google Scholar 

  28. Angers, S., Thorpe, C. J., Biechele, T. L., et al. (2006) The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt- ß - catenin pathway by targeting Dishevelled for degradation.Nature Cell Biol8, 348–357.

    Article  PubMed  CAS  Google Scholar 

  29. Malbon, C., Wang, H. (2006) Dishevelled: a mobile scaffold catalyzing development.Curr Topics Dev Biol72, 153–166.

    Article  CAS  Google Scholar 

  30. Kishida, S., Yamamoto, H., Hino, S., et al. (1999) DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate ß -catenin stability. MolCell Biol19, 4414–4422.

    CAS  Google Scholar 

  31. Axelrod, J. D., Miller, R., Shulman, J. M., et al. (1998) Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and wingless signaling pathways.Genes Dev12, 2610–2622.

    Article  PubMed  CAS  Google Scholar 

  32. Rothbacher, U., Laurent, M. N., Deardorff, M. A., et al. (2000) Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis.EMBO J19, 1010–1022.

    Article  PubMed  CAS  Google Scholar 

  33. Wikramanayake, A., unpublished observations.

    Google Scholar 

  34. Davidson, E. H., et al. (2002) A genomic regulatory network for development.Science295, 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  35. Oliveri, P., Davidson, E. H., McClay, D. R. (2003) Activation of pmar1 controls specification of micromeres in the sea urchin embryo.Dev Biol258, 32–43.

    Article  PubMed  CAS  Google Scholar 

  36. Sweet, H. C., Gehring, M., Ettensohn, C. A. (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.Development129, 1945–1955.

    PubMed  CAS  Google Scholar 

  37. Oliveri, P., Carrick, D. M., Davidson, E. H. (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo.Dev Biol246, 209–228.

    Article  PubMed  CAS  Google Scholar 

  38. Sherwood, D. R., McClay, D. R. (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.Development126, 1703–1713.

    PubMed  CAS  Google Scholar 

  39. Minokawa, T., Wikramanayake, A. H., Davidson, E. H. (2005) Cis-regulator y inputs of the wnt8 gene in the sea urchin endomesoderm network.Dev Biol288, 545–558.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, W., Wikramanayake, A. H., Gonzalez-Rimbau, M., et al. (1996) Very early and transient vegetal-plate expression of SpKrox1,a Kruppel/Krox gene from Strongylocentrotus purpuratus.Mech Dev60, 185–195.

    Article  PubMed  CAS  Google Scholar 

  41. Ransick, A., Rast, J. P., Minokawa, T., et al. (2002) New early zygotic regulators of endomesoderm specification in sea urchin embryos discovered by differential array hybridization.Dev Biol246, 132–147.

    Article  PubMed  CAS  Google Scholar 

  42. Kenny, A. P., Oleksyn, D. W., Newman, L. A., et al. (2003) Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.Dev. Biol. 261, 412–425.

    Article  PubMed  CAS  Google Scholar 

  43. Angerer, L. M., Kenny, A. P., Newman, L. A., et al. (2007) Mutual antagonism of SoxB1 and canonical Wnt sigrnaling in sea urchin embryo.Signal Tran7, 174–180.

    Article  CAS  Google Scholar 

  44. Angerer, L. M., Newman, L. A., Angerer, R. C. (2005) SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.Development132, 999–1008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant IOS 0446523, and the Ingeborg v. F. McKee Fund and the George F. Straub Trust of the Hawaii Community Foundation to AHW.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kumburegama, S., Wikramanayake, A.H. (2008). Wnt Signaling in the Early Sea Urchin Embryo. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology, vol 469. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-469-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-469-2_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-468-5

  • Online ISBN: 978-1-60327-469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics