Skip to main content

Identification of Natural Human Glucocorticoid Receptor (hGR) Mutations or Polymorphisms and Their Functional Consequences at the Hormone–Receptor Interaction Level

  • Protocol
  • First Online:
Molecular Endocrinology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 590))

Abstract

Glucocorticoids regulate a broad spectrum of physiologic functions essential for life and play an important role in the maintenance of basal and stress-related homeostasis. At the cellular level, the actions of glucocorticoids are mediated by the human glucocorticoid receptor α (hGRα), a ligand-dependent transcription factor ubiquitously expressed in almost all tissues and cells. The molecular mechanisms of hGRα action involve (a) binding to glucocorticoids, (b) cytoplasmic to nuclear translocation, (c) binding/association to DNA/chromatin, and (d) transcriptional activation or repression by interacting with cofactors and other transcription factors. Mutations or polymorphisms in the hGR gene may impair these molecular mechanisms of hGRα action, thereby altering tissue sensitivity to glucocorticoids. The latter may take the form of glucocorticoid resistance or glucocorticoid hypersensitivity and may be associated with significant morbidity. The identification of natural pathologic mutations in patients’ hGR gene and the subsequent examination of the functional defects of the natural mutant hGRα receptors would enhance our understanding of the molecular mechanisms of hGRα action and highlight the importance of integrated cellular and molecular signaling mechanisms for maintaining homeostasis and preserving normal physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kino, T., and Chrousos, G. P. (2004) Glucocorticoid effect on gene expression. In Handbook on Stress and the Brain Part 1 (Steckler, T., Kalin, N. H., and Reul, J. M. H. M., eds) pp. 295–312, Elsevier BV, Amsterdam.

    Google Scholar 

  2. Chrousos, G. P., Charmandari, E., and Kino, T. (2004) Glucocorticoid action networks–an introduction to systems biology. J Clin Endocrinol Metab 89, 563–564.

    Article  PubMed  CAS  Google Scholar 

  3. Chrousos, G. P. (2004) The glucocorticoid receptor gene, longevity, and the complex disorders of Western societies. Am J Med 117, 204–207.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou, J., and Cidlowski, J. A. (2005) The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70, 407–417.

    Article  PubMed  CAS  Google Scholar 

  5. Duma, D., Jewell, C. M., and Cidlowski, J. A. (2006) Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol 102, 11–21.

    Article  PubMed  CAS  Google Scholar 

  6. Pratt, W. B. (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 268, 21455–21458.

    PubMed  CAS  Google Scholar 

  7. Terry, L. J., Shows, E. B., and Wente, S. R. (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  8. Bamberger, C. M., Schulte, H. M., and Chrousos, G. P. (1996) Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev 17, 245–261.

    PubMed  CAS  Google Scholar 

  9. Schaaf, M. J., and Cidlowski, J. A. (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83, 37–48.

    Article  PubMed  CAS  Google Scholar 

  10. Jonat, C., Rahmsdorf, H. J., Park, K. K., Cato, A. C., Gebel, S., Ponta, H., and Herrlich, P. (1990) Antitumor promotion and antiinflammation: down-modulation of AP–1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62, 1189–1204.

    Article  PubMed  CAS  Google Scholar 

  11. Scheinman, R. I., Gualberto, A., Jewell, C. M., Cidlowski, J. A., and Baldwin, A. S., Jr. (1995) Characterization of mechanisms involved in transrepression of NF-κB by activated glucocorticoid receptors. Mol Cell Biol 15, 943–953.

    PubMed  CAS  Google Scholar 

  12. Chrousos, G. P., and Kino, T. (2005) Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci STKE, pe48.

    Google Scholar 

  13. Kino, T., and Chrousos, G. P. (2002) Tissue-specific glucocorticoid resistance-hypersensitivity syndromes: multifactorial states of clinical importance. J Allergy Clin Immunol 109, 609–613.

    Article  PubMed  CAS  Google Scholar 

  14. McKenna, N. J., Xu, J., Nawaz, Z., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1999) Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol 69, 3–12.

    Article  PubMed  CAS  Google Scholar 

  15. McKenna, N. J., Lanz, R. B., and O'Malley, B. W. (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20, 321–344.

    Article  PubMed  CAS  Google Scholar 

  16. McKenna, N. J., and O'Malley, B. W. (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108,465–474.

    Article  PubMed  CAS  Google Scholar 

  17. Auboeuf, D., Honig, A., Berget, S. M., and O'Malley, B. W. (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298, 416–419.

    Article  PubMed  CAS  Google Scholar 

  18. Hittelman, A. B., Burakov, D., Iniguez-Lluhi, J. A., Freedman, L. P., and Garabedian, M. J. (1999) Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J 18, 5380–5388.

    Article  PubMed  CAS  Google Scholar 

  19. Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736.

    Article  PubMed  CAS  Google Scholar 

  20. Kino, T., De Martino, M. U., Charmandari, E., Mirani, M., and Chrousos, G. P. (2003) Tissue glucocorticoid resistance/hypersensitivity syndromes. J Steroid Biochem Mol Biol 85, 457–467.

    Article  PubMed  CAS  Google Scholar 

  21. Chrousos, G. P., and Kino, T. (2007) Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress 10, 213–219.

    Article  PubMed  CAS  Google Scholar 

  22. Charmandari, E., Kino, T., Ichijo, T., and Chrousos, G. P. (2008) Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab 93, 1563–1572.

    Article  PubMed  CAS  Google Scholar 

  23. Kino, T., Stauber, R. H., Resau, J. H., Pavlakis, G. N., and Chrousos, G. P. (2001) Pathologic human GR mutant has a transdominant negative effect on the wild-type GR by inhibiting its translocation into the nucleus: importance of the ligand-binding domain for intracellular GR trafficking. J Clin Endocrinol Metab 86, 5600–5608.

    Article  PubMed  CAS  Google Scholar 

  24. Charmandari, E., Kino, T., Ichijo, T., Jubiz, W., Mejia, L., Zachman, K., and Chrousos, G. P. (2007) A novel point mutation in helix 11 of the ligand-binding domain of the human glucocorticoid receptor gene causing generalized glucocorticoid resistance. J Clin Endocrinol Metab 92, 3986–3990.

    Article  PubMed  CAS  Google Scholar 

  25. Charmandari, E., Kino, T., Ichijo, T., Zachman, K., Alatsatianos, A., and Chrousos, G. P. (2006) Functional characterization of the natural human glucocorticoid receptor (hGR) mutants hGRαR477H and hGRαG679S associated with generalized glucocorticoid resistance. J Clin Endocrinol Metab 91, 1535–1543.

    Article  PubMed  CAS  Google Scholar 

  26. Kino, T., Liou, S. H., Charmandari, E., and Chrousos, G. P. (2004) Glucocorticoid receptor mutants demonstrate increased motility inside the nucleus of living cells: time of fluorescence recovery after photobleaching (FRAP) is an integrated measure of receptor function. Mol Med 10, 80–88.

    PubMed  CAS  Google Scholar 

  27. Charmandari, E., Raji, A., Kino, T., Ichijo, T., Tiulpakov, A., Zachman, K., and Chrousos, G. P. (2005) A novel point mutation in the ligand-binding domain (LBD) of the human glucocorticoid receptor (hGR) causing generalized glucocorticoid resistance: the importance of the C terminus of hGR LBD in conferring transactivational activity. J Clin Endocrinol Metab 90, 3696–3705.

    Article  PubMed  CAS  Google Scholar 

  28. Charmandari, E., Kino, T., Souvatzoglou, E., Vottero, A., Bhattacharyya, N., and Chrousos, G. P. (2004) Natural glucocorticoid receptor mutants causing generalized glucocorticoid resistance: molecular genotype, genetic transmission, and clinical phenotype. J Clin Endocrinol Metab 89, 1939–1949.

    Article  PubMed  CAS  Google Scholar 

  29. Vottero, A., Kino, T., Combe, H., Lecomte, P., and Chrousos, G. P. (2002) A novel, C-terminal dominant negative mutation of the GR causes familial glucocorticoid resistance through abnormal interactions with p160 steroid receptor coactivators. J Clin Endocrinol Metab 87, 2658–2667.

    Article  PubMed  CAS  Google Scholar 

  30. Karl, M., Lamberts, S. W., Koper, J. W., Katz, D. A., Huizenga, N. E., Kino, T., Haddad, B. R., Hughes, M. R., and Chrousos, G. P. (1996) Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 108, 296–307.

    PubMed  CAS  Google Scholar 

  31. Karl, M., Lamberts, S. W., Detera-Wadleigh, S. D., Encio, I. J., Stratakis, C. A., Hurley, D. M., Accili, D., and Chrousos, G. P. (1993) Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab 76, 683–689.

    Article  PubMed  CAS  Google Scholar 

  32. Hurley, D. M., Accili, D., Stratakis, C. A., Karl, M., Vamvakopoulos, N., Rorer, E., Constantine, K., Taylor, S. I., and Chrousos, G. P. (1991) Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 87, 680–686.

    Article  PubMed  CAS  Google Scholar 

  33. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  34. Stauber, R. H., Horie, K., Carney, P., Hudson, E. A., Tarasova, N. I., Gaitanaris, G. A., and Pavlakis, G. N. (1998) Development and applications of enhanced green fluorescent protein mutants. Biotechniques 24, 462–466, 468–471.

    Google Scholar 

  35. Kino, T., Tiulpakov, A., Ichijo, T., Chheng, L., Kozasa, T., and Chrousos, G. P. (2005) G protein β interacts with the glucocorticoid receptor and suppresses its transcriptional activity in the nucleus. J Cell Biol 169, 885–896.

    Article  PubMed  CAS  Google Scholar 

  36. Schaaf, M. J., and Cidlowski, J. A. (2003) Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol Cell Biol 23, 1922–1934.

    Article  PubMed  CAS  Google Scholar 

  37. Brasier, A. R., Tate, J. E., and Habener, J. F. (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7, 1116–1122.

    PubMed  CAS  Google Scholar 

  38. Bhattacharyya, N., Dey, A., Minucci, S., Zimmer, A., John, S., Hager, G., and Ozato, K. (1997) Retinoid-induced chromatin structure alterations in the retinoic acid receptor β2 promoter. Mol Cell Biol 17, 6481–6490.

    PubMed  CAS  Google Scholar 

  39. Chen, W., Rogatsky, I., and Garabedian, M. J. (2006) MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol Endocrinol 20, 560–572.

    Article  PubMed  CAS  Google Scholar 

  40. Lu, N. Z., and Cidlowski, J. A. (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18, 331–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This book chapter was created based on the work supported in part by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Charmandari, E., Chrousos, G.P., Kino, T. (2009). Identification of Natural Human Glucocorticoid Receptor (hGR) Mutations or Polymorphisms and Their Functional Consequences at the Hormone–Receptor Interaction Level. In: Park-Sarge, OK., Curry, T. (eds) Molecular Endocrinology. Methods in Molecular Biology, vol 590. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-378-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-378-7_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-377-0

  • Online ISBN: 978-1-60327-378-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics