Skip to main content

Delivery of RNA Interference to Peripheral Neurons In Vivo Using Herpes Simplex Virus

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

RNA interference (RNAi) has become a powerful tool for modulating gene expression. While delivery of small interfering RNAs (siRNAs) has achieved silencing of pain-related genes in various animal models of nociception, delivery of short-hairpin RNA (shRNA) or artificial miRNA (miRNA) to dorsal root ganglia (DRG) has proven particularly challenging. This chapter describes a highly efficient method for in vivo gene silencing in sensory neurons using replication-defective vectors based on herpes simplex virus (HSV). This method can be utilised to obtain a better understanding of gene function, validate novel gene targets in drug discovery and potentially develop new RNAi-mediated approaches to achieve analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 120(1):15–20

    Article  PubMed  CAS  Google Scholar 

  3. Gregory RI, Yan K-P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of micrornas. Nature 432(7014):235–240

    Article  PubMed  CAS  Google Scholar 

  4. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microrna precursors. Science 303(5654):95–98

    Article  PubMed  CAS  Google Scholar 

  5. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microrna processing. Genes Dev 18(24):3016–3027

    Article  PubMed  CAS  Google Scholar 

  6. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  PubMed  CAS  Google Scholar 

  7. Hutvagner G, Mclachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  PubMed  CAS  Google Scholar 

  8. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216

    Article  PubMed  CAS  Google Scholar 

  9. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  PubMed  CAS  Google Scholar 

  10. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotech 21(6):635–637

    Article  CAS  Google Scholar 

  11. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9(6):1327–1333

    Article  PubMed  CAS  Google Scholar 

  12. Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9(1):112–123

    Article  PubMed  CAS  Google Scholar 

  13. Chung KH, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD, Vojtek AB, Turner DL (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 34(7):e53

    Article  PubMed  Google Scholar 

  14. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, Mccombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37(11):1281–1288

    PubMed  CAS  Google Scholar 

  15. Boudreau RL, Martins I, Davidson BL (2008) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17(1):169–175

    Article  PubMed  Google Scholar 

  16. Alvarez VA, Ridenour DA, Sabatini BL (2006) Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J Neurosci 26(30):7820–7825

    Article  PubMed  CAS  Google Scholar 

  17. Cao W, Hunter R, Strnatka D, Mcqueen CA, Erickson RP (2005) DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. J Appl Genet 46(2):217–225

    PubMed  Google Scholar 

  18. Pebernard S, Iggo RD (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72:103–111

    Article  PubMed  CAS  Google Scholar 

  19. Bauer M, Kinkl N, Meixner A, Kremmer E, Riemenschneider M, Forstl H, Gasser T, Ueffing M (2008) Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Ther 16(1):142–147

    Article  PubMed  Google Scholar 

  20. Mcbride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins IS, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105(15):5868–5873

    Article  PubMed  CAS  Google Scholar 

  21. Hutvágner G, Mj S, Cc M, Pd Z (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2(4):e98

    Article  PubMed  Google Scholar 

  22. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR (2005) Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11(2):220–226

    Article  PubMed  CAS  Google Scholar 

  23. Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, Soifer H, Gatignol A, Riggs A, Rossi JJ (2007) Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 35(15):5154–5164

    Article  PubMed  CAS  Google Scholar 

  24. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541

    Article  PubMed  CAS  Google Scholar 

  25. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJC, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J (2004) SiRNA relieves chronic neuropathic pain. Nucleic Acids Res 32(5):e49

    Article  PubMed  Google Scholar 

  26. Luo MC, Zhang DQ, Ma SW, Huang YY, Shuster S, Porreca F, Lai J (2005) An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 1(1):29

    Article  PubMed  Google Scholar 

  27. Tan PH, Yang LC, Shih HC, Lan KC, Cheng JT (2004) Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther 12(1):59–66

    Article  Google Scholar 

  28. Christoph T, Grünweller A, Mika J, Schäfer MKH, Wade EJ, Weihe E, Erdmann VA, Frank R, Gillen C, Kurreck J (2006) Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun 350(1):238–243

    Article  PubMed  CAS  Google Scholar 

  29. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DCP, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11(43):429–433

    Article  PubMed  CAS  Google Scholar 

  30. Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11(43):423–428

    Article  PubMed  CAS  Google Scholar 

  31. Harper SQ, Staber PD, He X, Eliason SL, Martins ISH, Mao Q, Yang L, Kotin RM, Paulson HL, Davidson BL (2005) RNA interference improves motor and neuropathological abnormalities in a huntington’s disease mouse model. Proc Natl Acad Sci USA 102(16):5820–5825

    Article  PubMed  CAS  Google Scholar 

  32. Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, Verma IM, Masliah E (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8(10):1343–1349

    Article  PubMed  CAS  Google Scholar 

  33. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8):816–820

    Article  PubMed  CAS  Google Scholar 

  34. Palmer JA, Branston RH, Lilley CE, Robinson MJ, Groutsi F, Smith J, Latchman DS, Coffin RS (2000) Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 74(12):5604–5618

    Article  PubMed  CAS  Google Scholar 

  35. Lilley CE, Groutsi F, Han Z, Palmer JA, Anderson PN, Latchman DS, Coffin RS (2001) Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 75(9):4343–4356

    Article  PubMed  CAS  Google Scholar 

  36. Anesti AM, Peeters PJ, Royaux I, Coffin RS (2008) Efficient delivery of RNA interference to peripheral neurons in vivo using herpes simplex virus. Nucleic Acids Res 36(14):e86

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Maria Anesti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Anesti, AM. (2010). Delivery of RNA Interference to Peripheral Neurons In Vivo Using Herpes Simplex Virus. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics