Skip to main content

Genetic Cell Ablation

  • Protocol
  • First Online:
Mouse Molecular Embryology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1092))

Abstract

Targeted cell ablation has proven to be a valuable approach to study in vivo cell functions during organogenesis, tissue homeostasis, and regeneration. Over the last two decades, various approaches have been developed to refine the control of cell ablation. In this review, we give an overview of the distinct genetic tools available for targeted cell ablation, with a particular emphasis on their respective specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breitman ML, Clapoff S, Rossant J, Tsui LC, Glode LM, Maxwell IH, Bernstein A (1987) Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238:1563–1565

    Article  PubMed  CAS  Google Scholar 

  2. Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    Article  PubMed  CAS  Google Scholar 

  3. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250

    Article  PubMed  CAS  Google Scholar 

  4. Maxwell F, Maxwell IH, Glode LM (1987) Cloning, sequence determination, and expression in transfected cells of the coding sequence for the tox 176 attenuated diphtheria toxin A chain. Mol Cell Biol 7:1576–1579

    PubMed  CAS  Google Scholar 

  5. Landel CP, Zhao J, Bok D, Evans GA (1988) Lens-specific expression of recombinant ricin induces developmental defects in the eyes of transgenic mice. Genes Dev 2:1168–1178

    Article  PubMed  CAS  Google Scholar 

  6. Borrelli E, Heyman R, Hsi M, Evans RM (1988) Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci U S A 85:7572–7576

    Article  PubMed  CAS  Google Scholar 

  7. Heyman RA, Borrelli E, Lesley J, Anderson D, Richman DD, Baird SM, Hyman R, Evans RM (1989) Thymidine kinase obliteration: creation of transgenic mice with controlled immune deficiency. Proc Natl Acad Sci U S A 86:2698–2702

    Article  PubMed  CAS  Google Scholar 

  8. Wallace H, Ledent C, Vassart G, Bishop JO, al-Shawi R (1991) Specific ablation of thyroid follicle cells in adult transgenic mice. Endocrinology 129:3217–3226

    Article  PubMed  CAS  Google Scholar 

  9. Wallace H, Clarke AR, Harrison DJ, Hooper ML, Bishop JO (1996) Ganciclovir-induced ablation non-proliferating thyrocytes expressing herpesvirus thymidine kinase occurs by p53-independent apoptosis. Oncogene 13:55–61

    PubMed  CAS  Google Scholar 

  10. Canfield V, West AB, Goldenring JR, Levenson R (1996) Genetic ablation of parietal cells in transgenic mice: a new model for analyzing cell lineage relationships in the gastric mucosa. Proc Natl Acad Sci U S A 93:2431–2435

    Article  PubMed  CAS  Google Scholar 

  11. Clark AJ, Iwobi M, Cui W, Crompton M, Harold G, Hobbs S, Kamalati T, Knox R, Neil C, Yull F, Gusterson B (1997) Selective cell ablation in transgenic mice expression E. coli nitroreductase. Gene Ther 4:101–110

    Article  PubMed  CAS  Google Scholar 

  12. Drabek D, Guy J, Craig R, Grosveld F (1997) The expression of bacterial nitroreductase in transgenic mice results in specific cell killing by the prodrug CB1954. Gene Ther 4:93–100

    Article  PubMed  CAS  Google Scholar 

  13. Kwak SP, Malberg JE, Howland DS, Cheng KY, Su J, She Y, Fennell M, Ghavami A (2007) Ablation of central nervous system progenitor cells in transgenic rats using bacterial nitroreductase system. J Neurosci Res 85:1183–1193

    Article  PubMed  CAS  Google Scholar 

  14. Hamel W, Magnelli L, Chiarugi VP, Israel MA (1996) Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res 56:2697–2702

    PubMed  CAS  Google Scholar 

  15. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53:5274–5283

    PubMed  CAS  Google Scholar 

  16. Ahtiainen M, Toppari J, Poutanen M, Huhtaniemi I (2004) Indirect Sertoli cell-mediated ablation of germ cells in mice expressing the inhibin-alpha promoter/herpes simplex virus thymidine kinase transgene. Biol Reprod 71:1545–1550

    Article  PubMed  CAS  Google Scholar 

  17. Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061

    Article  PubMed  CAS  Google Scholar 

  18. Mitamura T, Umata T, Nakano F, Shishido Y, Toyoda T, Itai A, Kimura H, Mekada E (1997) Structure-function analysis of the diphtheria toxin receptor toxin binding site by site-directed mutagenesis. J Biol Chem 272:27084–27090

    Article  PubMed  CAS  Google Scholar 

  19. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19:746–750

    Article  PubMed  CAS  Google Scholar 

  20. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154

    Article  PubMed  CAS  Google Scholar 

  21. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    Article  PubMed  CAS  Google Scholar 

  22. Hu W, Ferris SP, Tweten RK, Wu G, Radaeva S, Gao B, Bronson RT, Halperin JA, Qin X (2008) Rapid conditional targeted ablation of cells expressing human CD59 in transgenic mice by intermedilysin. Nat Med 14:98–103

    Article  PubMed  CAS  Google Scholar 

  23. Mallet VO, Mitchell C, Guidotti JE, Jaffray P, Fabre M, Spencer D, Arnoult D, Kahn A, Gilgenkrantz H (2002) Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20:1234–1239

    Article  PubMed  CAS  Google Scholar 

  24. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    PubMed  CAS  Google Scholar 

  25. Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L, Roth KA, Kitsis RN, Scherer PE (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11:797–803

    Article  PubMed  CAS  Google Scholar 

  26. Wang ZV, Mu J, Schraw TD, Gautron L, Elmquist JK, Zhang BB, Brownlee M, Scherer PE (2008) PANIC-ATTAC: a mouse model for inducible and reversible beta-cell ablation. Diabetes 57:2137–2148

    Article  PubMed  CAS  Google Scholar 

  27. Burnett SH, Kershen EJ, Zhang J, Zeng L, Straley SC, Kaplan AM, Cohen DA (2004) Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 75:612–623

    Article  PubMed  CAS  Google Scholar 

  28. Grieshammer U, Lewandoski M, Prevette D, Oppenheim RW, Martin GR (1998) Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev Biol 197:234–247

    Article  PubMed  CAS  Google Scholar 

  29. Brockschnieder D, Pechmann Y, Sonnenberg-Riethmacher E, Riethmacher D (2006) An improved mouse line for Cre-induced cell ablation due to diphtheria toxin A, expressed from the Rosa26 locus. Genesis 44:322–327

    Article  PubMed  CAS  Google Scholar 

  30. Matsumura H, Hasuwa H, Inoue N, Ikawa M, Okabe M (2004) Lineage-specific cell disruption in living mice by Cre-mediated expression of diphtheria toxin A chain. Biochem Biophys Res Commun 321:275–279

    Article  PubMed  CAS  Google Scholar 

  31. Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D (2004) Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 24:7636–7642

    Article  PubMed  CAS  Google Scholar 

  32. Sato M, Tanigawa M (2005) Production of CETD transgenic mouse line allowing ablation of any type of specific cell population. Mol Reprod Dev 72:54–67

    Article  PubMed  CAS  Google Scholar 

  33. Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez-Barbera JP (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43:129–135

    Article  PubMed  CAS  Google Scholar 

  34. Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, Jung S, Waisman A (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426

    Article  PubMed  CAS  Google Scholar 

  35. Chen YT, Levasseur R, Vaishnav S, Karsenty G, Bradley A (2004) Bigenic Cre/loxP, puDeltatk conditional genetic ablation. Nucleic Acids Res 32:e161

    Article  PubMed  Google Scholar 

  36. Gregoire D, Kmita M (2008) Recombination between inverted loxP sites is cytotoxic for proliferating cells and provides a simple tool for conditional cell ablation. Proc Natl Acad Sci U S A 105:14492–14496

    Article  PubMed  CAS  Google Scholar 

  37. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920

    Article  PubMed  CAS  Google Scholar 

  38. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8(24):1323–1326

    Google Scholar 

  39. Bennett CL, Clausen BE (2007) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Trends Immunol 28:525–531

    Article  PubMed  CAS  Google Scholar 

  40. Haldar M, Karan G, Tvrdik P, Capecchi MR (2008) Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Dev Cell 14:437–445

    Article  PubMed  CAS  Google Scholar 

  41. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  PubMed  CAS  Google Scholar 

  42. Voehringer D, Liang HE, Locksley RM (2008) Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J Immunol 180:4742–4753

    PubMed  CAS  Google Scholar 

  43. Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, Andre P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagne F, Vivier E (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 104:3384–3389

    Article  PubMed  CAS  Google Scholar 

  44. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220

    Article  PubMed  CAS  Google Scholar 

  45. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, Clausen BE (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–576

    Article  PubMed  CAS  Google Scholar 

  46. Wu S, Wu Y, Capecchi MR (2006) Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage-restricted progenitors in vivo. Development 133:581–590

    Article  PubMed  CAS  Google Scholar 

  47. Breitman ML, Rombola H, Maxwell IH, Klintworth GK, Bernstein, A (1990) Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene. Mol Cell Biol 10(2):474–479

    Google Scholar 

  48. Behringer RR, Mathews LS, Palmiter RD, Brinster RL (1988) Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene. Genes Dev 2:453–461

    Article  PubMed  CAS  Google Scholar 

  49. Quaife CJ, Hoyle GW, Froelick GJ, Findley SD, Baetge EE, Behringer RR, Hammang JP, Brinster RL, Palmiter RD (1994) Visualization and ablation of phenylethanolamine N-methyltransferase producing cells in transgenic mice. Transgenic Res 3:388–400

    Article  PubMed  CAS  Google Scholar 

  50. Garabedian EM, Roberts LJ, McNevin MS, Gordon JI (1997) Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J Biol Chem 272:23729–23740

    Article  PubMed  CAS  Google Scholar 

  51. Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M (1998) A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21:481–493

    Article  PubMed  CAS  Google Scholar 

  52. Chen J, Nathans J (2007) Genetic ablation of cone photoreceptors eliminates retinal folds in the retinal degeneration 7 (rd7) mouse. Invest Ophthalmol Vis Sci 48:2799–2805

    Article  PubMed  Google Scholar 

  53. Arase K, Saijo K, Watanabe H, Konno A, Arase H, Saito T (1999) Ablation of a specific cell population by the replacement of a uniquely expressed gene with a toxin gene. Proc Natl Acad Sci U S A 96:9264–9268

    Article  PubMed  CAS  Google Scholar 

  54. Itoh H, Beck PL, Inoue N, Xavier R, Podolsky DK (1999) A paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J Clin Invest 104:1539–1547

    Article  PubMed  CAS  Google Scholar 

  55. Lee KJ, Dietrich P, Jessell TM (2000) Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403:734–740

    Article  PubMed  CAS  Google Scholar 

  56. Bartell JG, Fantz DA, Davis T, Dewey MJ, Kistler MK, Kistler WS (2000) Elimination of male germ cells in transgenic mice by the diphtheria toxin A chain gene directed by the histone H1t promoter. Biol Reprod 63:409–416

    Article  PubMed  CAS  Google Scholar 

  57. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23:611–620

    Article  PubMed  CAS  Google Scholar 

  58. Zhang Y, Overbeek PA, Govindarajan V (2007) Perinatal ablation of the mouse lens causes multiple anterior chamber defects. Mol Vis 13:2289–2300

    PubMed  Google Scholar 

  59. Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM (2008) Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 283:18365–18376

    Article  PubMed  CAS  Google Scholar 

  60. Mishra SK, Hoon MA (2010) Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation. Mol Cell Neurosci 43(1):157–163

    Google Scholar 

  61. Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, Jain S, Kuehn MR, Capecchi MR, Chen F (2010) Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation. Dev Biol 340:518–527

    Article  PubMed  CAS  Google Scholar 

  62. Longbottom R, Fruttiger M, Douglas RH, Martinez-Barbera JP, Greenwood J, Moss SE (2009) Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proc Natl Acad Sci U S A 106:18728–18733

    Article  PubMed  CAS  Google Scholar 

  63. Gensch N, Borchardt T, Schneider A, Riethmacher D, Braun T (2008) Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis. Development 135:1597–1604

    Article  PubMed  CAS  Google Scholar 

  64. Akazawa H, Komazaki S, Shimomura H, Terasaki F, Zou Y, Takano H, Nagai T, Komuro I (2004) Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure. J Biol Chem 279:41095–41103

    Article  PubMed  CAS  Google Scholar 

  65. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    Article  PubMed  CAS  Google Scholar 

  66. Stoecklinger A, Grieshuber I, Scheiblhofer S, Weiss R, Ritter U, Kissenpfennig A, Malissen B, Romani N, Koch F, Ferreira F, Thalhamer J, Hammerl P (2007) Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J Immunol 179:886–893

    PubMed  CAS  Google Scholar 

  67. Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685

    Article  PubMed  CAS  Google Scholar 

  68. Chen H, Kohno K, Gong Q (2005) Conditional ablation of mature olfactory sensory neurons mediated by diphtheria toxin receptor. J Neurocytol 34:37–47

    Article  PubMed  Google Scholar 

  69. Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR (2006) Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12:1075–1080

    Article  PubMed  CAS  Google Scholar 

  70. Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, Savill J, Hughes J, Lang RA (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174:2336–2342

    PubMed  CAS  Google Scholar 

  71. Miyake Y, Kaise H, Isono K, Koseki H, Kohno K, Tanaka M (2007) Protective role of macrophages in noninflammatory lung injury caused by selective ablation of alveolar epithelial type II cells. J Immunol 178:5001–5009

    PubMed  CAS  Google Scholar 

  72. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J, Sparwasser T (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204:57–63

    Article  PubMed  CAS  Google Scholar 

  73. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475

    Article  PubMed  CAS  Google Scholar 

  74. Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG (2008) Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 8:301–309

    Article  PubMed  CAS  Google Scholar 

  75. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3:e2451

    Article  PubMed  Google Scholar 

  76. Kamogawa Y, Minasi LA, Carding SR, Bottomly K, Flavell RA (1993) The relationship of IL-4- and IFN gamma-producing T cells studied by lineage ablation of IL-4-producing cells. Cell 75:985–995

    Article  PubMed  CAS  Google Scholar 

  77. Salomon B, Lores P, Pioche C, Racz P, Jami J, Klatzmann D (1994) Conditional ablation of dendritic cells in transgenic mice. J Immunol 152:537–548

    PubMed  CAS  Google Scholar 

  78. Delaney CL, Brenner M, Messing A (1996) Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci 16:6908–6918

    PubMed  CAS  Google Scholar 

  79. Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201

    Article  PubMed  CAS  Google Scholar 

  80. Rindi G, Ratineau C, Ronco A, Candusso ME, Tsai M, Leiter AB (1999) Targeted ablation of secretin-producing cells in transgenic mice reveals a common differentiation pathway with multiple enteroendocrine cell lineages in the small intestine. Development 126:4149–4156

    PubMed  CAS  Google Scholar 

  81. Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW (2001) Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 16:2222–2231

    Article  PubMed  CAS  Google Scholar 

  82. Bellier B, Thomas-Vaslin V, Saron MF, Klatzmann D (2003) Turning immunological memory into amnesia by depletion of dividing T cells. Proc Natl Acad Sci U S A 100:15017–15022

    Article  PubMed  CAS  Google Scholar 

  83. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  PubMed  CAS  Google Scholar 

  84. Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34:272–282

    Article  PubMed  CAS  Google Scholar 

  85. Isles AR, Ma D, Milsom C, Skynner MJ, Cui W, Clark J, Keverne EB, Allen ND (2001) Conditional ablation of neurones in transgenic mice. J Neurobiol 47:183–193

    Article  PubMed  CAS  Google Scholar 

  86. Felmer R, Cui W, Clark AJ (2002) Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene. J Endocrinol 175:487–498

    Article  PubMed  CAS  Google Scholar 

  87. Wang XD, Shou J, Wong P, French DM, Gao WQ (2004) Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem 279:24733–24744

    Article  PubMed  CAS  Google Scholar 

  88. Okuyama M, Kayama H, Atarashi K, Saiga H, Kimura T, Waisman A, Yamamoto M, Takeda K (2010) A novel in vivo inducible dendritic cell ablation model in mice. Biochem Biophys Res Commun 397:559–563

    Article  PubMed  CAS  Google Scholar 

  89. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33:955–966

    Article  PubMed  CAS  Google Scholar 

  90. Hanson J, Gille A, Zwykiel S, Lukasova M, Clausen BE, Ahmed K, Tunaru S, Wirth A, Offermanns S (2010) Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J Clin Invest 120:2910–2919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Hipfner and members of the lab for critical reading of the manuscript. This work was supported by the Canadian Institutes for Health Research (CIHR-82880), the Canada Research Chair (to M.K.), and by a postdoctoral fellowship from the Fond de la Recherche en Santé du Québec (to D.G.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Grégoire, D., Kmita, M. (2014). Genetic Cell Ablation. In: Lewandoski, M. (eds) Mouse Molecular Embryology. Methods in Molecular Biology, vol 1092. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-60327-292-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-292-6_25

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-60327-290-2

  • Online ISBN: 978-1-60327-292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics