Skip to main content

Interneuron Loss as a Cause of Seizures: Lessons from Interneuron-Deficient Mice

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 40))

Abstract

Throughout our nervous system, excitation and inhibition are exquisitely balanced to enable a multitude of functions. When this balance is disrupted, neurons experience a surplus or a deficit in excitation, either of which can have devastating consequences. In the cortex, excitation and inhibition are mediated by glutamatergic pyramidal cells and GABAergic interneurons, respectively. The loss of GABAergic inhibition in the epileptic brain places neurons in a hyperexcitable state in which they are vulnerable to the high-frequency firing that defines seizures. The association between seizures and a loss of GABAergic transmission is supported by numerous investigations of epileptic patients and animal models of epilepsy(1–3). For example, brain tissue from patients suffering from mesial temporal lobe epilepsy (MTLE), one of the most common medically intractable forms, is distinguished by a loss of specific subtypes of interneurons. Furthermore, electrophysiological studies have demonstrated that dentate gyrus granule cells from epileptic patients exhibit a functional reduction in inhibitory synaptic transmission (4). These clinical findings are consistent with extensive work in pharmacologically induced animal models of epilepsy, including models of TLE and cortical dysplasia (5–9). Although clinical and animal studies show a correlation between reduced inhibition and epilepsy, interneuron-deficient transgenic mice that exhibit an epileptic phenotype have recently confirmed that this link is causal. As such, interneuron-deficient transgenic mice can serve as mouse models of epilepsy and have the potential to significantly advance our understanding of interneuron development, interneuron function, and the importance of GABAergic inhibition in preventing seizure activity. In this chapter, we will review information that is directly relevant to our understanding of GABAergic interneuron-deficient mice, including interneuron origins and diversity, the characteristics of various types of interneuron-deficient mice, what we have learned from these mice, and the clinical applications of such mice in the treatment of epilepsy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Calcagnotto ME, Paredes MF, Tihan T, Barbaro NM, Baraban SC. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J Neurosci 2005;25(42):9649–57.

    Article  PubMed  CAS  Google Scholar 

  2. Spreafico R, Battaglia G, Arcelli P, Andermann F, Dubeau F, Palmini A et al. Cortical dysplasia: An immunocytochemical study of three patients. Neurology 1998;50 (1):27–36.

    PubMed  CAS  Google Scholar 

  3. Spreafico R, Tassi L, Colombo N, Bramerio M, Galli C, Garbelli R et al. Inhibitory circuits in human dysplastic tissue. Epilepsia 2000;41 (Suppl 6):168–73.

    Article  Google Scholar 

  4. Williamson A, Patrylo PR, Spencer DD. Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol 1999;45(1):92–9.

    Article  PubMed  CAS  Google Scholar 

  5. Zhu WJ, Roper SN. Reduced inhibition in an animal model of cortical dysplasia. J Neurosci 2000;20(23):8925–31.

    PubMed  CAS  Google Scholar 

  6. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006;9(9):1142–49.

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 2003;23(6):2440–52.

    PubMed  CAS  Google Scholar 

  8. Kumar SS, Buckmaster PS. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 2006; 26(17):4613–23.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar SS, Jin X, Buckmaster PS, Huguenard JR. Recurrent circuits in layer II of medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 2007; 27(6):1239–46.

    Article  PubMed  CAS  Google Scholar 

  10. Sussel L, Marin O, Kimura S, Rubenstein JL. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into the striatum. Development 1999; 126(15):3359–70.

    PubMed  CAS  Google Scholar 

  11. Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes. Science 1997;78(5337):474–6.

    Article  PubMed  CAS  Google Scholar 

  12. Powell EM, Mars WM, Levitt P. Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 2001; 30(1):79–89.

    Article  PubMed  CAS  Google Scholar 

  13. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 2005;8(8):1059–68.

    Article  PubMed  CAS  Google Scholar 

  14. Marin O, Rubenstein, JL. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2001;2(11):780–790.

    Google Scholar 

  15. Yozu M, Tabata H, Nakajima K. The caudal migratory stream: A novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 2005;25(31):7268–77.

    Article  PubMed  CAS  Google Scholar 

  16. Marin O, Anderson SA, Rubenstein JL. Origin and molecular specification of striatal interneurons. J Neurosci 2000;20(16):6063–76.

    PubMed  CAS  Google Scholar 

  17. Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 2001;128(19):3759–71.

    PubMed  CAS  Google Scholar 

  18. Rakic P. Specification of cerebral cortical areas. Science 1988;241(4862):170–6.

    Article  PubMed  CAS  Google Scholar 

  19. Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci 2006;7(9):687–96.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 2001; 128(3):353–63.

    PubMed  CAS  Google Scholar 

  21. Nery S, Fishell G, Corbin JG. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 2002; 5(12):1279–87.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 1997; 19(1):27–37.

    Article  PubMed  CAS  Google Scholar 

  23. McBain CJ, Fisahn A. Interneurons unbound. Nat Rev Neurosci 2001; 2(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  24. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5(10):793–807.

    Article  PubMed  CAS  Google Scholar 

  25. Butt SJ, Cobos I, Golden J, Kessaris N, Pachnis V, Anderson S. Transcriptional regulation of cortical interneuron development. J Neurosci 2007; 27(44):11847–50.

    Article  PubMed  CAS  Google Scholar 

  26. Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA. Origins of cortical interneuron subtypes. J Neurosci 2004; 24(11):2612–22.

    Article  PubMed  CAS  Google Scholar 

  27. Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 2005; 48(4):591–604.

    Article  PubMed  CAS  Google Scholar 

  28. Yuste R. Origin and classification of neocortical interneurons. Neuron 2005; 48(4):524–7.

    Article  PubMed  CAS  Google Scholar 

  29. Cobos I, Long JE, Thwin MT, Rubenstein JL. Cellular patterns of transcription factor expression in developing cortical interneurons. Cereb Cortex 2006; 16(Suppl 1):82–8.

    Article  Google Scholar 

  30. Porteus MH, Bulfone A, Liu JK, Puelles L, Lo LC, Rubenstein JL. DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J Neurosci 1994; 14(11 Pt 1):6370–83.

    PubMed  CAS  Google Scholar 

  31. Dolle P, Price M, Duboule D. Expression of the murine Dlx-1 homeobox gene during facial, ocular and limb development. Differentiation 1992; 49(2):93–9.

    Article  PubMed  CAS  Google Scholar 

  32. Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA et al. DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 1999; 414(2):217–37.

    Article  PubMed  CAS  Google Scholar 

  33. Panganiban G, Rubenstein JL. Developmental functions of the Distal-less/Dlx homeobox genes. Development 2002; 129(19):4371–86.

    PubMed  CAS  Google Scholar 

  34. Qiu M, Bulfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT et al. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol 1997; 185(2):165–84.

    Article  PubMed  CAS  Google Scholar 

  35. Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 1998; 21(6):1273–82.

    Article  PubMed  CAS  Google Scholar 

  36. Pleasure SJ, Anderson S, Hevner R, Bagri A, Marin O, Lowenstein DH et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 2000; 28(3):727–40.

    Article  PubMed  CAS  Google Scholar 

  37. Depew MJ, Liu JK, Long JE, Presley R, Meneses JJ, Pedersen RA et al. Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 1999; 126(17):3831–46.

    PubMed  CAS  Google Scholar 

  38. Levi G, Puche AC, Mantero S, Barbieri O, Trombino S, Paleari L et al. The Dlx5 homeodomain gene is essential for olfactory development and connectivity in the mouse. Mol Cell Neurosci 2003; 22(4):530–43.

    Article  PubMed  CAS  Google Scholar 

  39. Long JE, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A et al. Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J Neurosci 2007; 27(12):3230–43.

    Article  PubMed  CAS  Google Scholar 

  40. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM et al. The T/ebp null mouse: Thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996; 10(1):60–9.

    Article  PubMed  CAS  Google Scholar 

  41. Poirier K, Van Esch H, Friocourt G, Saillour Y, Bahi N, Backer S et al. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Brain Res Mol Brain Res 2004; 122(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  42. Stromme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SM, Bruyere H et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 2002; 30(4):441–5.

    Article  PubMed  CAS  Google Scholar 

  43. Frints SG, Froyen G, Marynen P, Willekens D, Legius E, Fryns JP. Re-evaluation of MRX36 family after discovery of an ARX gene mutation reveals mild neurological features of Partington syndrome. Am J Med Genet 2002; 112(4):427–8.

    Article  PubMed  Google Scholar 

  44. Kato M, Das S, Petras K, Sawaishi Y, Dobyns WB. Polyalanine expansion of ARX associated with cryptogenic West syndrome. Neurology 2003;61(2):267–76.

    PubMed  CAS  Google Scholar 

  45. Uyanik G, Aigner L, Martin P, Gross C, Neumann D, Marschner-Schafer H et al. ARX mutations in X-linked lissencephaly with abnormal genitalia. Neurology 2003; 61(2):232–5.

    PubMed  CAS  Google Scholar 

  46. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32(3):359–69.

    Article  PubMed  CAS  Google Scholar 

  47. Cobos I, Broccoli V, Rubenstein JL. The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J Comp Neurol 2005;483(3):292–303.

    Article  PubMed  CAS  Google Scholar 

  48. Baraban SC, Tallent MK. Interneuron Diversity series: Interneuronal neuropeptides – endogenous regulators of neuronal excitability. Trends Neurosci 2004;27(3):135–42.

    Article  PubMed  CAS  Google Scholar 

  49. Monaghan AP, Bock D, Gass P, Schwager A, Wolfer DP, Lipp HP et al. Defective limbic system in mice lacking the tailless gene. Nature 1997;390(6659):515–17.

    Article  PubMed  CAS  Google Scholar 

  50. Roy K, Thiels E, Monaghan AP. Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav 2002;77(4–5):595–600.

    Article  PubMed  CAS  Google Scholar 

  51. Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: With partners in the regulation of embryonic development. Trends Genet 2000;16(4):182–7.

    Article  PubMed  CAS  Google Scholar 

  52. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17(1):126–40.

    Article  PubMed  CAS  Google Scholar 

  53. Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004;131(15):3805–19.

    Article  PubMed  CAS  Google Scholar 

  54. Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gullo F et al. Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 2008;135(3):541–57.

    Google Scholar 

  55. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998; 8(10):404–10.

    Article  PubMed  CAS  Google Scholar 

  56. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995;376(6543):768–71.

    Article  PubMed  CAS  Google Scholar 

  57. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995;373(6516):702–5.

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995;373(6516):699–702.

    Article  PubMed  CAS  Google Scholar 

  59. Mars WM, Kim TH, Stolz DB, Liu ML, Michalopoulos GK. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res 1996;56(12):2837–43.

    PubMed  CAS  Google Scholar 

  60. Naldini L, Tamagnone L, Vigna E, Sachs M, Hartmann G, Birchmeier W et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J 1992; 11(13):4825–33.

    PubMed  CAS  Google Scholar 

  61. Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 2003;23(2):622–31.

    PubMed  CAS  Google Scholar 

  62. Bae M, Bissonette GB, Suresh T, Franz TM, Depireux DA, Powell EM. Hepatocyte growth factor (HGF) reduces seizures and behavioral deficits in a mouse model of frontal lobe epilepsy. Epilepsia 48[s6], 238–48. 10-27-2007. Ref Type: Abstract

    Article  Google Scholar 

  63. Glickstein SB, Moore H, Slowinska B, Racchumi J, Suh M, Chuhma N et al. Selective cortical interneuron and GABA deficits in cyclin D2-null mice. Development 2007; 134(22):4083–93.

    Article  PubMed  CAS  Google Scholar 

  64. Ross ME. Cell division and the nervous system: Regulating the cycle from neural differentiation to death. Trends Neurosci 1996; 19(2):62–8.

    Article  PubMed  CAS  Google Scholar 

  65. Hofmann SL, Das AK, Lu JY, Soyombo AA. Positional candidate gene cloning of CLN1. Adv Genet 2001; 45:69–2.

    Article  PubMed  CAS  Google Scholar 

  66. Hofmann SL, Atashband A, Cho SK, Das AK, Gupta P, Lu JY. Neuronal ceroid lipofuscinoses caused by defects in soluble lysosomal enzymes (CLN1 and CLN2). Curr Mol Med 2002; 2(5):423–37.

    Article  PubMed  CAS  Google Scholar 

  67. Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA et al. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci USA 2001; 98(24):13566–71.

    Article  PubMed  CAS  Google Scholar 

  68. Jalanko A, Vesa J, Manninen T, von Schantz C, Minye H, Fabritius AL et al. Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons. Neurobiol Dis 2005;18(1):226–41.

    Article  PubMed  CAS  Google Scholar 

  69. Kielar C, Maddox L, Bible E, Pontikis CC, Macauley SL, Griffey MA et al. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 2007;25(1):150–62.

    Article  PubMed  CAS  Google Scholar 

  70. National Institute of Neurological Disorders and Stroke. Seizures and Epilepsy: Hope Through Research. http://www.ninds.nih.gov/disorders/epilepsy/detail_epilepsy.htm 2-13-2008. 3-11-2008.

  71. Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001; 42(Suppl 3):8–12.

    Article  PubMed  Google Scholar 

  72. Magloczky Z, Freund TF. Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 2005;28(6):334–40.

    Article  PubMed  CAS  Google Scholar 

  73. Ben Ari Y. Seizures beget seizures: The quest for GABA as a key player. Crit Rev Neurobiol 2006;18(1–2):135–44.

    PubMed  CAS  Google Scholar 

  74. Fritschy JM, Kiener T, Bouilleret V, Loup F. GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int 1999;34(5):435–45.

    Article  PubMed  CAS  Google Scholar 

  75. Martin JL, Sloviter RS. Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P. J Comp Neurol 2001;436(2):127–52.

    Article  PubMed  CAS  Google Scholar 

  76. Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1987; 235(4784):73–6.

    Article  PubMed  CAS  Google Scholar 

  77. Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994;35(6):640–54.

    Article  PubMed  CAS  Google Scholar 

  78. Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben Ari Y et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 2001;4(1):52–62.

    Article  PubMed  CAS  Google Scholar 

  79. Dinocourt C, Petanjek Z, Freund TF, Ben Ari Y, Esclapez M. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol 2003; 459(4):407–25.

    Article  PubMed  Google Scholar 

  80. Sayin U, Osting S, Hagen J, Rutecki P, Sutula T. Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J Neurosci 2003;23(7):2759–68.

    PubMed  CAS  Google Scholar 

  81. Kobayashi M, Wen X, Buckmaster PS. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 2003;23(24):8471–9.

    PubMed  CAS  Google Scholar 

  82. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495(2):387–95.

    Article  PubMed  Google Scholar 

  83. Magloczky Z, Wittner L, Borhegyi Z, Halasz P, Vajda J, Czirjak S et al. Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 2000; 96(1):7–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jones-Davis, D., Calcagnotto, ME., Sebe, J.Y. (2009). Interneuron Loss as a Cause of Seizures: Lessons from Interneuron-Deficient Mice. In: Baraban, S. (eds) Animal Models of Epilepsy. Neuromethods, vol 40. Humana Press. https://doi.org/10.1007/978-1-60327-263-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-263-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-262-9

  • Online ISBN: 978-1-60327-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics