Skip to main content

The Development of Germline Stem Cells in Drosophila

  • Protocol
Germline Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 450))

Summary

Germline stem cells (GSCs) in Drosophila are a valuable model to explore of how adult stem cells are regulated in vivo. Genetic dissection of this system has shown that stem cell fate is determined and maintained by the stem cell's somatic microenvironment or niche. In Drosophila gonads, the stem cell niche— the cap cell cluster in females and the hub in males—acts as a signaling center to recruit GSCs from among a small population of undifferentiated primordial germ cells (PGCs). Short-range signals from the niche specify and regulate stem cell fate by maintaining the undifferentiated state of the PGCs next to the niche. Germline cells that do not receive the niche signals because of their location assume the default fate and differentiate. Once GSCs are specified, adherens junctions maintain close association between the stem cells and their niche and help to orient stem cell division so that one daughter is displaced from the niche and differentiates. In females, stem cell fate depends on bone morphogenetic protein (BMP) signals from the cap cells; in males, hub cells express the cytokine-like ligand Unpaired, which activates the Janus kinase-signal transducers and activators of transcription (Jak-Stat) pathway in stem cells. Although the signaling pathways operating between the niche and stem cells are different, there are common general features in both males and females, including the arrangement of cell types, many of the genes used, and the logic of the system that maintains stem cell fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Fuchs, E., Tumbar, T., and Guasch, G. (2004) Socializing with the neighbors: stem cells and their niche. Cell. 116, 769–778.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Wong, M. D., Jin, Z., and Xie, T. (2005) Molecular mechanisms of germline stem cell regulation. Annu. Rev. Genet. 39, 173–195.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Saffman, E. E., and Lasko, P. (1999) Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55, 1141–1163.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Mahowald, A. P. (2001) Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203, 187–213.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Seydoux, G., and Schedl, T. (2001) The germline in C. elegans: origins, proliferation, and silencing. Int. Rev. Cytol. 203, 139–185.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Extavour, C. G., and Akam, M. (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development. 130, 5869–5884.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Tsang, T. E., Khoo, P. L., Jamieson, R. V. , et al. (2001) The allocation and differentiation of mouse primordial germ cells. Int. J. Dev. Biol. 45, 549–555.

    CAS  PubMed  Google Scholar 

  8. 8. Saitou, M., Barton, S. C., and Surani, M. A. (2002) A molecular programme for the specification of germ cell fate in mice. Nature. 418, 293–300.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Houston, D. W., and King, M. L. (2000) Germ plasm and molecular determinants of germ cell fate. Curr. Top. Dev. Biol. 50, 155–181.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Pal-Bhadra, M., Bhadra, U., and Birchler, J. A. (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell. 9, 315–327.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Megosh, H. B., Cox, D. N., Campbell, C., and Lin, H. (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr. Biol. 16, 1884–1894.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Cox, D. N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., and Ruohola-Baker, H. (2005) Stem cell division is regulated by the microRNA pathway. Nature. 435, 974–978.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Forstemann, K., Tomari, Y. , Du, T., et al. (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Van Doren, M., Williamson, A. L., and Lehmann, R. (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr. Biol. 8, 243–246.

    Article  PubMed  Google Scholar 

  16. 16. Seydoux, G., and Dunn, M. A. (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development. 124, 2191–2201.

    CAS  PubMed  Google Scholar 

  17. 17. Leatherman, J. L., Levin, L., Boero, J., and Jongens, T. A. (2002) germ cell-less acts to repress transcription during the establishment of the Drosophila germ cell lineage. Curr. Biol. 12, 1681–1685.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Martinho, R. G., Kunwar, P. S., Casanova, J., and Lehmann, R. (2004) A noncoding RNA is required for the repression of RNApolII-dependent transcription in primordial germ cells. Curr. Biol. 14, 159–165.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Deshpande, G., Calhoun, G., Yanowitz, J. L., and Schedl, P. D. (1999) Novel functions of Nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell. 99, 271–281.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Kobayashi, S., Yamada, M., Asaoka, M., and Kitamura, T. (1996) Essential role of the posterior morphogen Nanos for germline development in Drosophila. Nature. 380, 708–711.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Asaoka, M., Sano, H., Obara, Y. , and Kobayashi, S. (1998) Maternal Nanos regulates zygotic gene expression in germline progenitors of Drosophila melanogaster. Mech. Dev. 78, 153–158.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Hayashi, Y., Hayashi, M., and Kobayashi, S. (2004) Nanos suppresses somatic cell fate in Drosophila germ line. Proc. Natl. Acad. Sci. U. S. A. 101, 10338–10342.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Coffman, C. R. (2003) Cell migration and programmed cell death of Drosophila germ cells. Ann. N. Y. Acad. Sci. 995, 117–126.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Forbes, A., and Lehmann, R. (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development. 125, 679–690.

    CAS  PubMed  Google Scholar 

  25. 25. Asaoka-Taguchi, M., Yamada, M., Nakamura, A., Hanyu, K., and Kobayashi, S. (1999) Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat. Cell. Biol. 1, 431–437.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Dalby, B., and Glover, D. M. (1992) 3′ non-translated sequences in Drosophila cyclin B transcripts direct posterior pole accumulation late in oogenesis and peri-nuclear association in syncytial embryos. Development. 115, 989–997.

    CAS  PubMed  Google Scholar 

  27. 27. Wang, Z., and Lin, H. (2005) The division of Drosophila germline stem cells and their precursors requires a specific cyclin. Curr. Biol. 15, 328–333.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Jongens, T. A., Hay, B., Jan, L. Y. , and Jan, Y. N. (1992) The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila. Cell. 70, 569–584.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Jongens, T. A., Ackerman, L. D., Swedlow, J. R., Jan, L. Y. , and Jan, Y. N. (1994) germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification pathway of Drosophila. Genes Dev. 8, 2123–2136.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Deshpande, G., Calhoun, G., and Schedl, P. (2004) Overlapping mechanisms function to establish transcriptional quiescence in the embryonic Drosophila germline. Development. 131, 1247–1257.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Nakamura, A., Amikura, R., Mukai, M., Kobayashi, S., and Lasko, P. F. (1996) Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science. 274, 2075–2079.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Muller, H. A. (2002) Germ cell migration: as slow as molasses. Curr. Biol. 12, R612–R614.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Santos, A. C., and Lehmann, R. (2004) Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578–R589.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Molyneaux, K., and Wylie, C. (2004) Primordial germ cell migration. Int. J. Dev. Biol. 48, 537–544.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Li, J., Xia, F., and Li, W. X. (2003) Coactivation of STAT and Ras is required for germ cell proliferation and invasive migration in Drosophila. Dev. Cell. 5, 787–798.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Kunwar, P. S., Starz-Gaiano, M., Bainton, R. J., Heberlein, U., and Lehmann, R. (2003) Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biol. 1, E80.

    Article  PubMed  Google Scholar 

  37. 37. Boyle, M., and DiNardo, S. (1995) Specification, migration and assembly of the somatic cells of the Drosophila gonad. Development. 121, 1815–1825.

    CAS  PubMed  Google Scholar 

  38. 38. Starz-Gaiano, M., Cho, N. K., Forbes, A., and Lehmann, R. (2001) Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development. 128, 983–991.

    CAS  PubMed  Google Scholar 

  39. 39. Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y., and Howard, K. (1997) The Drosophila protein Wunen repels migrating germ cells. Nature. 385, 64–67.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Sano, H., Renault, A. D., and Lehmann, R. (2005) Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. J. Cell Biol. 171, 675–683.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Renault, A. D., Sigal, Y. J., Morris, A. J., and Lehmann, R. (2004) Soma-germ line competition for lipid phosphate uptake regulates germ cell migration and survival. Science. 305, 1963–1966.

    Article  CAS  PubMed  Google Scholar 

  42. 42. Hanyu-Nakamura, K., Kobayashi, S., and Nakamura, A. (2004) Germ cell-autonomous Wunen2 is required for germline development in Drosophila embryos. Development. 131, 4545–4553.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Deshpande, G., Swanhart, L., Chiang, P., and Schedl, P. (2001) Hedgehog signaling in germ cell migration. Cell. 106, 759–769.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Van Doren, M., Broihier, H. T., Moore, L. A., and Lehmann, R. (1998) HMG-CoA reductase guides migrating primordial germ cells. Nature. 396, 466–469.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Santos, A. C., and Lehmann, R. (2004) Isoprenoids control germ cell migration downstream of HMGCoA reductase. Dev. Cell. 6, 283–293.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Deshpande, G., and Schedl, P. (2005) HMGCoA reductase potentiates hedgehog signaling in Drosophila melanogaster. Dev. Cell. 9, 629–638.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Besse, F., Busson, D., and Pret, A. M. (2005) Hedgehog signaling controls Soma-Germen interactions during Drosophila ovarian morphogenesis. Dev. Dyn. 234, 422–431.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Thorpe, J. L., Doitsidou, M., Ho, S. Y., Raz, E., and Farber, S. A. (2004) Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. Dev. Cell. 6, 295–302.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Kunwar, P. S., Siekhaus, D. E., and Lehmann, R. (2006) In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol. 22, 237–265.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Warrior, R. (1994) Primordial germ cell migration and the assembly of the Drosophila embryonic gonad. Dev. Biol. 166, 180–194.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Boyle, M., Bonini, N., and DiNardo, S. (1997) Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development. 124, 971–982.

    CAS  PubMed  Google Scholar 

  52. 52. Broihier, H. T., Moore, L. A., Van Doren, M., Newman, S., and Lehmann, R. (1998) zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development. 125, 655–666.

    CAS  PubMed  Google Scholar 

  53. 53. Simon, J., Peifer, M., Bender, W., and O'Connor, M. (1990) Regulatory elements of the bithorax complex that control expression along the anterior-posterior axis. EMBO J. 9, 3945–3956.

    CAS  PubMed  Google Scholar 

  54. 54. Poirie, M., Niederer, E., and Steinmann-Zwicky, M. (1995) A sex-specific number of germ cells in embryonic gonads of Drosophila. Development. 121, 1867–1873.

    CAS  PubMed  Google Scholar 

  55. 55. Sonnenblick, B. P. (1941) Germ cell movements and sex differentiation of the gonads in the Drosophila embryo. Proc. Natl. Acad. Sci. U. S. A. 27, 484–489.

    Article  CAS  PubMed  Google Scholar 

  56. 56. Van Doren, M., Mathews, W. R., Samuels, M., Moore, L. A., Broihier, H. T., and Lehmann, R. (2003) fear of intimacy encodes a novel transmembrane protein required for gonad morphogenesis in Drosophila. Development. 130, 2355–2364.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Jenkins, A. B., McCaffery, J. M., and Van Doren, M. (2003) Drosophila E-Cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development. 130, 4417–4426.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Li, M. A., Alls, J. D., Avancini, R. M., Koo, K., and Godt, D. (2003) The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat. Cell Biol. 5, 994–1000.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Schupbach, T., and Wieschaus, E. (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 129, 1119–1136.

    CAS  PubMed  Google Scholar 

  60. 60. Forbes, A. J., Lin, H., Ingham, P. W., and Spradling, A. C. (1996) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development. 122, 1125–1135.

    CAS  PubMed  Google Scholar 

  61. 61. Spradling, A. C., de Cuevas, M., Drummond-Barbosa, D., et al. (1997) The Drosophila germarium: stem cells, germ line cysts, and oocytes. Cold Spring Harb. Symp. Quant. Biol. 62, 25–34.

    CAS  PubMed  Google Scholar 

  62. 62. Xie, T., and Spradling, A. C. (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science. 290, 328–330.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001) Stem cells find their niche. Nature. 414, 98–104.

    Article  CAS  PubMed  Google Scholar 

  64. 64. Forbes, A. J., Spradling, A. C., Ingham, P. W., and Lin, H. (1996) The role of segment polarity genes during early oogenesis in Drosophila. Development. 122, 3283–3294.

    CAS  PubMed  Google Scholar 

  65. 65. Song, X., and Xie, T. (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc. Natl. Acad. Sci. U. S. A. 99, 14813–14818.

    Article  CAS  PubMed  Google Scholar 

  66. 66. Decotto, E., and Spradling, A. C. (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev. Cell. 9, 501–510.

    Article  CAS  PubMed  Google Scholar 

  67. 67. Sahut-Barnola, I., Godt, D., Laski, F. A., and Couderc, J. L. (1995) Drosophila ovary morphogenesis: analysis of terminal filament formation and identification of a gene required for this process. Dev. Biol. 170, 127–135.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Godt, D., and Laski, F. A. (1995) Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric a brac. Development. 121, 173–187.

    CAS  PubMed  Google Scholar 

  69. 69. Bolivar, J., Pearson, J., Lopez-Onieva, L., and Gonzalez-Reyes, A. (2006) Genetic dissection of a stem cell niche: the case of the Drosophila ovary. Dev. Dyn. 235, 2969–2979.

    Article  CAS  PubMed  Google Scholar 

  70. 70. de Cuevas, M., and Spradling, A. C. (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development. 125, 2781–2789.

    PubMed  Google Scholar 

  71. 71. Lin, H., Yue, L., and Spradling, A. C. (1994) The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development. 120, 947–956.

    CAS  PubMed  Google Scholar 

  72. 72. Deng, W., and Lin, H. (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol. 189, 79–94.

    Article  CAS  PubMed  Google Scholar 

  73. 73. Büning, J. (1994) The insect ovary: ultrastructure, previtellogenic growth, and evolution, Chapman and Hall, New York.

    Google Scholar 

  74. 74. Pepling, M. E., and Spradling, A. C. (1998) Female mouse germ cells form synchronously dividing cysts. Development. 125, 3323–3328.

    CAS  PubMed  Google Scholar 

  75. 75. Gilboa, L., and Lehmann, R. (2006) Soma-germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature. 443, 97–100.

    Article  CAS  PubMed  Google Scholar 

  76. 76. Asaoka, M., and Lin, H. (2004) Germline stem cells in the Drosophila ovary descend from pole cells in the anterior region of the embryonic gonad. Development. 131, 5079–5089.

    Article  CAS  PubMed  Google Scholar 

  77. 77. Song, X., Zhu, C. H., Doan, C., and Xie, T. (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 296, 1855–1857.

    Article  CAS  PubMed  Google Scholar 

  78. 78. Zhu, C. H., and Xie, T. (2003) Clonal expansion of ovarian germline stem cells during niche formation in Drosophila. Development. 130, 2579–2588.

    Article  CAS  PubMed  Google Scholar 

  79. 79. Bhat, K. M., and Schedl, P. (1997) Establishment of stem cell identity in the Drosophila germline. Dev Dyn. 210, 371–382.

    Article  CAS  PubMed  Google Scholar 

  80. 80. Brower, D. L., Smith, R. J., and Wilcox, M. (1981) Differentiation within the gonads of Drosophila revealed by immunofluorescence. J. Embryol. Exp. Morphol. 63, 233–242.

    CAS  PubMed  Google Scholar 

  81. 81. Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L., and Garavito, M. (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J. Ultrastruct. Res. 69, 180–190.

    Article  CAS  PubMed  Google Scholar 

  82. 82. Gonczy, P., and DiNardo, S. (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development. 122, 2437–2447.

    CAS  PubMed  Google Scholar 

  83. 83. Yamashita, Y. M., Jones, D. L., and Fuller, M. T. (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science. 301, 1547–1550.

    Article  CAS  PubMed  Google Scholar 

  84. 84. Gilboa, L., and Lehmann, R. (2004) How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development. 131, 4895–4905.

    Article  CAS  PubMed  Google Scholar 

  85. 85. DeFalco, T. J., Verney, G., Jenkins, A. B., McCaffery, J. M., Russell, S., and Van Doren, M. (2003) Sex-specific apoptosis regulates sexual dimorphism in the Drosophila embryonic gonad. Dev. Cell. 5, 205–216.

    Article  CAS  PubMed  Google Scholar 

  86. 86. DeFalco, T., Le Bras, S., and Van Doren, M. (2004) Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech. Dev. 121, 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  87. 87. Gonczy, P., Viswanathan, S., and DiNardo, S. (1992) Probing spermatogenesis in Drosophila with P-element enhancer detectors. Development. 114, 89–98.

    CAS  PubMed  Google Scholar 

  88. 88. Le Bras, S., and Van Doren, M. (2006) Development of the male germline stem cell niche in Drosophila. Dev. Biol. 294, 92–103.

    Article  CAS  PubMed  Google Scholar 

  89. 89. Fuller, M. T. (1993) in The development of Drosophila melanogaster (Bate, M., and Martinez Arias, A., Eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, Vol. 1, pp. 71–147.

    Google Scholar 

  90. 90. Kiger, A. A., White-Cooper, H., and Fuller, M. T. (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature. 407, 750–754.

    Article  CAS  PubMed  Google Scholar 

  91. 91. Tazuke, S. I., Schulz, C., Gilboa, L., et al. (2002) A germline-specific gap junction protein required for survival of differentiating early germ cells. Development. 129, 2529–2539.

    CAS  PubMed  Google Scholar 

  92. 92. Tanaka-Matakatsu, M., Uemura, T., Oda, H., Takeichi, M., and Hayashi, S. (1996) Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development. 122, 3697–3705.

    CAS  PubMed  Google Scholar 

  93. 93. Wang, H., Singh, S. R., Zheng, Z., et al. (2006) Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-Cadherin-mediated cell adhesion in the Drosophila testis. Dev. Cell. 10, 117–126.

    Article  CAS  PubMed  Google Scholar 

  94. 94. Lee, J. H., Cho, K. S., Lee, J., et al. (2002) Drosophila PDZ-GEF, a guanine nucleotide exchange factor for Rap1 GTPase, reveals a novel upstream regulatory mechanism in the mitogen-activated protein kinase signaling pathway. Mol. Cell Biol. 22, 7658–7666.

    Article  CAS  PubMed  Google Scholar 

  95. 95. Price, L. S., Hajdo-Milasinovic, A., Zhao, J., Zwartkruis, F. J., Collard, J. G., and Bos, J. L. (2004) Rap1 regulates E-Cadherin-mediated cell-cell adhesion. J. Biol. Chem. 279, 35127–35132.

    Article  CAS  PubMed  Google Scholar 

  96. 96. Knox, A. L., and Brown, N. H. (2002) Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science. 295, 1285–1288.

    Article  CAS  PubMed  Google Scholar 

  97. 97. Robertson, S. E., Dockendorff, T. C., Leatherman, J. L., Faulkner, D. L., and Jongens, T. A. (1999) germ cell-less is required only during the establishment of the germ cell lineage of Drosophila and has activities which are dependent and independent of its localization to the nuclear envelope. Dev. Biol. 215, 288–297.

    Article  CAS  PubMed  Google Scholar 

  98. 98. Schulz, C., Wood, C. G., Jones, D. L., Tazuke, S. I., and Fuller, M. T. (2002) Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development. 129, 4523–4534.

    CAS  PubMed  Google Scholar 

  99. 99. Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M. E. (1995) Notch signaling. Science. 268, 225–232.

    Article  CAS  PubMed  Google Scholar 

  100. 100. Ward, E. J., Shcherbata, H. R., Reynolds, S. H., Fischer, K. A., Hatfield, S. D., and Ruohola-Baker, H. (2006) Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr. Biol. 16, 2352–2358.

    Article  CAS  PubMed  Google Scholar 

  101. 101. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B., and Fuller, M. T. (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science. 294, 2542–2545.

    Article  CAS  PubMed  Google Scholar 

  102. 102. Tulina, N., and Matunis, E. (2001) Control of stem cell self-renewal in Drosophila sperma-togenesis by JAK-STAT signaling. Science. 294, 2546–2549.

    Article  CAS  PubMed  Google Scholar 

  103. 103. Rawlings, J. S., Rosler, K. M., and Harrison, D. A. (2004) The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281–1283.

    Article  CAS  PubMed  Google Scholar 

  104. 104. Song, X., Wong, M. D., Kawase, E., et al. (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development. 131, 1353–1364.

    Article  CAS  PubMed  Google Scholar 

  105. 105. Chen, D., and McKearin, D. M. (2003) A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development. 130, 1159–1170.

    Article  CAS  PubMed  Google Scholar 

  106. 106. McKearin, D., and Ohlstein, B. (1995) A role for the Drosophila Bag-of-Marbles protein in the differentiation of cystoblasts from germline stem cells. Development. 121, 2937–2947.

    CAS  PubMed  Google Scholar 

  107. 107. Ohlstein, B., and McKearin, D. (1997) Ectopic expression of the Drosophila Bam protein eliminates oogenic germline stem cells. Development. 124, 3651–3662.

    CAS  PubMed  Google Scholar 

  108. 108. Ohlstein, B., Lavoie, C. A., Vef, O., Gateff, E., and McKearin, D. M. (2000) The Drosophila cystoblast differentiation factor, benign gonial cell neoplasm, is related to DExH-box proteins and interacts genetically with bag of marbles. Genetics. 155, 1809–1819.

    CAS  PubMed  Google Scholar 

  109. 109. Chen, D., and McKearin, D. (2003) Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr. Biol. 13, 1786–1791.

    Article  CAS  PubMed  Google Scholar 

  110. 110. Gilboa, L., and Lehmann, R. (2004) Repression of primordial germ cell differentiation parallels germ line stem cell maintenance. Curr. Biol. 14, 981–986.

    Article  CAS  PubMed  Google Scholar 

  111. 111. Kai, T., and Spradling, A. (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc. Natl. Acad. Sci. U. S. A. 100, 4633–4638.

    Article  CAS  PubMed  Google Scholar 

  112. 112. Gilboa, L., Forbes, A., Tazuke, S. I., Fuller, M. T., and Lehmann, R. (2003) Germ line stem cell differentiation in Drosophila requires gap junctions and proceeds via an intermediate state. Development. 130, 6625–6634.

    Article  CAS  PubMed  Google Scholar 

  113. 113. Dorfman, R., and Shilo, B. Z. (2001) Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. Development. 128, 965–972.

    CAS  PubMed  Google Scholar 

  114. 114. Niki, Y. , Yamaguchi, T., and Mahowald, A. P. (2006) Establishment of stable cell lines of Drosophila germ-line stem cells. Proc. Natl. Acad. Sci. U. S. A. 103, 16325–16330.

    Article  CAS  PubMed  Google Scholar 

  115. 115. Niki, Y. , and Mahowald, A. P. (2003) Ovarian cystocytes can repopulate the embryonic germ line and produce functional gametes. Proc. Natl. Acad. Sci. U. S. A. 100, 14042–14045.

    Article  CAS  PubMed  Google Scholar 

  116. 116. Shivdasani, A. A., and Ingham, P. W. (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by TGF-beta signaling in Drosophila spermatogenesis. Curr. Biol. 13, 2065–2072.

    Article  CAS  PubMed  Google Scholar 

  117. 117. Schulz, C., Kiger, A. A., Tazuke, S. I., et al. (2004) A misexpression screen reveals effects of Bag of Marbles and TGF-beta class signaling on the Drosophila male germ-line stem cell lineage. Genetics. 167, 707–723.

    Article  CAS  PubMed  Google Scholar 

  118. 118. Kawase, E., Wong, M. D., Ding, B. C., and Xie, T. (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development. 131, 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  119. 119. Gonczy, P., Matunis, E., and DiNardo, S. (1997) bag of marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis. Development. 124, 4361–4371.

    CAS  PubMed  Google Scholar 

  120. 120. Subramaniam, K., and Seydoux, G. (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development. 126, 4861–4871.

    CAS  PubMed  Google Scholar 

  121. 121. Koprunner, M., Thisse, C., Thisse, B., and Raz, E. (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15, 2877–2885.

    CAS  PubMed  Google Scholar 

  122. 122. Tsuda, M., Sasaoka, Y., Kiso, M., et al. (2003) Conserved role of Nanos proteins in germ cell development. Science. 301, 1239–1241.

    Article  CAS  PubMed  Google Scholar 

  123. 123. Parisi, M., and Lin, H. (2000) Translational repression: a duet of Nanos and Pumilio. Curr. Biol. 10, R81–R83.

    Article  CAS  PubMed  Google Scholar 

  124. 124. Wang, Z., and Lin, H. (2004) Nanos maintains germline stem cell self-renewal by preventing differentiation. Science. 303, 2016–2019.

    Article  CAS  PubMed  Google Scholar 

  125. 125. Szakmary, A., Cox, D. N., Wang, Z., and Lin, H. (2005) Regulatory relationship among piwi, pumilio, and bag of marbles in Drosophila germline stem cell self-renewal and differentiation. Curr. Biol. 15, 171–178.

    Article  CAS  PubMed  Google Scholar 

  126. 126. Chen, D., and McKearin, D. (2005) Gene circuitry controlling a stem cell niche. Curr. Biol. 15, 179–184.

    Article  CAS  PubMed  Google Scholar 

  127. 127. Kai, T., and Spradling, A. (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature. 428, 564–569.

    Article  CAS  PubMed  Google Scholar 

  128. 128. Brawley, C., and Matunis, E. (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 304, 1331–1334.

    Article  CAS  PubMed  Google Scholar 

  129. 129. Margolis, J., and Spradling, A. (1995) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development. 121, 3797–3807.

    CAS  PubMed  Google Scholar 

  130. 130. Tran, J., Brenner, T. J., and DiNardo, S. (2000) Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature. 407, 754–757.

    Article  CAS  PubMed  Google Scholar 

  131. 131. Silver, D. L., and Montell, D. J. (2001) Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell. 107, 831–841.

    Article  CAS  PubMed  Google Scholar 

  132. 132. Lasko, P. F., and Ashburner, M. (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature. 335, 611–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Akira Nakamura for sharing unpublished results. We thank T. Xie for providing hh-lacZ flies; P. Macdonald for flies expressing Aub::GFP; and the Developmental Studies Hybridoma Bank, University of Iowa, for α-Spectrin and Fas3 antibodies. P.L. acknowledges financial support from the National Institute of Child Health and Human Development, the Canadian Institutes of Health Research, the Natural Sciences and Engeneering Research Council of Canada, and the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Dansereau, D.A., Lasko, P. (2008). The Development of Germline Stem Cells in Drosophila . In: Hou, S.X., Singh, S.R. (eds) Germline Stem Cells. Methods in Molecular Biology™, vol 450. Humana Press. https://doi.org/10.1007/978-1-60327-214-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-214-8_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-213-1

  • Online ISBN: 978-1-60327-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics